江苏省淮安市淮安中学2021-2022学年数学高二第二学期期末监测模拟试题含解析_第1页
江苏省淮安市淮安中学2021-2022学年数学高二第二学期期末监测模拟试题含解析_第2页
江苏省淮安市淮安中学2021-2022学年数学高二第二学期期末监测模拟试题含解析_第3页
江苏省淮安市淮安中学2021-2022学年数学高二第二学期期末监测模拟试题含解析_第4页
江苏省淮安市淮安中学2021-2022学年数学高二第二学期期末监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题

2、目要求的。1从5种主料中选2种,8种辅料中选3种来烹饪一道菜,烹饪方式有5种,那么最多可以烹饪出不同的菜的种数为A18B200C2800D336002在区间0,2上随机取两个数x,y,则xy0,2的概率是( )A1-ln22 B3-2ln3一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是( )A乙 B甲 C丁 D丙4设为方程的解.若,则n的值为()A1

3、B2C3D45因为对数函数是增函数,而是对数函数,所以是增函数,上面的推理错误的是A大前提B小前提C推理形式D以上都是6已知,则,这上这2个数中( )A都大于2B都小于2C至少有一个不小于2D至少有一个不大于27直线的倾斜角的大小为( )ABCD8某单位为了了解用电量y(度)与气温x()之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:气温x()181310-1用电量(度)24343864由表中数据得线性回归方程,预测当气温为-4时用电量度数为( )A68B67C65D649已知定义在上的函数的导函数为,且,若存在实数,使不等式对于任意恒成立,则实数的取值范围是()ABCD10如

4、图,有一种游戏画板,要求参与者用六种颜色给画板涂色,这六种颜色分别为红色、黄色1、黄色2、黄色3、金色1、金色2,其中黄色1、黄色2、黄色3是三种不同的颜色,金色1、金色2是两种不同的颜色,要求红色不在两端,黄色1、黄色2、黄色3有且仅有两种相邻,则不同的涂色方案有()A120种B240种C144种D288种11已知双曲线的焦距为,其渐近线方程为,则焦点到渐近线的距离为( )A1BC2D12若函数在区间上的图象如图所示,则的值( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知抛物线的焦点为,直线过且依次交抛物线及圆于点,四点,则的最小值为_14已知集合,则_.15的展开式中

5、,的系数为_16在的展开式中,的系数为_ (用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在直角坐标系中,斜率为k的动直线l过点,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.(1)若直线l与曲线C有两个交点,求这两个交点的中点P的轨迹关于参数k的参数方程;(2)在条件(1)下,求曲线的长度.18(12分)在中,a,b,c分别是角A,B,C所对的边,且.(1)求A的值;(2)若,求面积的最大值.19(12分)在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系已知点A的极坐标为,直线l的极坐标方程为cosa

6、,且点A在直线l上(1)求a的值及直线l的直角坐标方程;(2)圆C的参数方程为(为参数),试判断直线l与圆C的位置关系20(12分)已知某盒子中共有个小球,编号为号至号,其中有个红球、个黄球和个绿球,这些球除颜色和编号外完全相同(1)若从盒中一次随机取出个球,求取出的个球中恰有个颜色相同的概率;(2)若从盒中逐一取球,每次取后立即放回,共取次,求恰有次取到黄球的概率;(3)若从盒中逐一取球,每次取后不放回,记取完黄球所需次数为,求随机变量的分布列及数学期望.21(12分)已知函数(1)当时,解不等式;(2)若存在满足,求实数a的取值范围22(10分)一辆汽车前往目的地需要经过个有红绿灯的路口.

7、汽车在每个路口遇到绿灯的概率为(可以正常通过),遇到红灯的概率为(必须停车).假设汽车只有遇到红灯或到达目的地才停止前进,用随机变量表示前往目的地途中遇到红灯数和绿灯数之差的绝对值.(1)求汽车在第个路口首次停车的概率;(2)求的概率分布和数学期望.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据组合定义以及分布计数原理列式求解.【详解】从5种主料中选2种,有种方法,从8种辅料中选3种,有种方法,根据分布计数原理得烹饪出不同的菜的种数为,选C.【点睛】求解排列、组合问题常用的解题方法:分布计数原理与分类计数原理,具

8、体问题可使用对应方法:如 (1)元素相邻的排列问题“捆邦法”;(2)元素相间的排列问题“插空法”;(3)元素有顺序限制的排列问题“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题间接法.2、C【解析】试题分析:由题意所有的基本事件满足0 x20y2,所研究的事件满足0y2x,画出可行域如图,总的区域面积是一个边长为2 的正方形,其面积为4,满足0y2x的区域的面积为考点:几何概型3、A【解析】由题意,这个问题的关键是四人中有两人说真话,另外两人说了假话,通过这一突破口,进行分析,推理即可得到结论.【详解】在甲、乙、丙、丁四人的供词中,可以得出乙、丁两人的观点是一致的,因此乙丁

9、两人的供词应该是同真同假(即都是真话或都是假话,不会出现一真一假的情况);假设乙、丁两人所得都是真话,那么甲、丙两人说的是假话,由乙说真话可推出丙是犯罪的结论;由甲说假话,推出乙、丙、丁三人不是犯罪的结论;显然这两人是相互矛盾的;所以乙、丁两人说的是假话,而甲、丙两人说的是真话,由甲、丙的供词可以断定乙是犯罪的,乙、丙、丁中有一人是犯罪的,由丁说假话,丙说真话推出乙是犯罪的,综上可得乙是犯罪的,故选A.【点睛】本题主要考查了推理问题的实际应用,其中解答中结合题意,进行分析,找出解决问题的突破口,然后进行推理是解答的关键,着重考查了推理与论证能力.4、B【解析】由题意可得,令,由,可得,再根据,

10、即可求解的值.【详解】有题意可知是方程的解,所以,令,由,所以,再根据,可得,故选B.【点睛】本题主要考查了函数的零点与方程的根的关系,以及函数的零点的判定定理的应用,其中解答中合理吧方程的根转化为函数的零点问题,利用零点的判定定理是解答的关键,着重考查了转化思想,以及推理与运算能力,属于基础题.5、A【解析】由于三段论的大前提“对数函数是增函数”是错误的,所以选A.【详解】由于三段论的大前提“对数函数是增函数”是错误的,只有当a1时,对数函数才是增函数,故答案为:A【点睛】(1)本题主要考查三段论,意在考查学生对该知识的掌握水平和分析推理能力.(2)一个三段论,只有大前提正确,小前提正确和推

11、理形式正确,结论才是正确的.6、C【解析】根据取特殊值以及利用反证法,可得结果.【详解】当时,故A,B错误; 当时,故D错误;假设,则,又,矛盾,故选:C【点睛】本题主要考查反证法,正所谓“正难则反”,熟练掌握反证法的证明方法,属基础题.7、B【解析】由直线方程,可知直线的斜率,设直线的倾斜角为,则,又,所以,故选8、A【解析】根据回归直线方程过样本中心点,计算出并代入回归直线方程,求得的值,然后将代入回归直线方程,求得预测的用电量度数.【详解】解:,线性回归方程为:,当时,当气温为时,用电量度数为68,故选A【点睛】本小题主要考查回归直线方程过样本中心点,考查方程的思想,属于基础题.9、C【

12、解析】对函数求导,分别求出和的值,得到,利用导数得函数的最小值为1,把存在实数,使不等式对于任意恒成立的问题转化为对于任意恒成立,分离参数,分类讨论大于零,等于零,小于零的情况,从而得到的取值范围。【详解】由题可得,分别把和代入与中得到 ,解得:; ,即当时,则在上单调递减;当时,则在上单调递增; 要存在实数,使不等式对于任意恒成立,则不等式对于任意恒成立,即不等式对于任意恒成立;(1)当时,显然不等式不成立,舍去;(2)当时,不等式对于任意恒成立转化为对于任意恒成立,即,解得:;(3)当时,不等式对于任意恒成立转化为对于任意恒成立,即,解得:;综述所述,实数的取值范围是故答案选C【点睛】本题

13、考查函数解析式的求法,利用导数求函数最小值,分类参数法,考查学生转化的思想,分类讨论的能力,属于中档题。10、D【解析】首先计算出“黄色1、黄色2、黄色3有且仅有两个相邻的涂色方案”数,然后计算出“红色在左右两端,黄色1、黄色2、黄色3有且仅有两个相邻的涂色方案”数,用前者减去后者,求得题目所求不同的涂色方案总数.【详解】不考虑红色的位置,黄色1、黄色2、黄色3有且仅有两个相邻的涂色方案有种. 这种情况下,红色在左右两端的涂色方案有种;从而所求的结果为种.故选D.【点睛】本小题主要考查涂色问题,考查相邻问题、不在两端的排列组合问题的求解策略,考查对立事件的方法,属于中档题.11、A【解析】首先

14、根据双曲线的焦距得到,再求焦点到渐近线的距离即可.【详解】由题知:,.到直线的距离.故选:A【点睛】本题主要考查双曲线的几何性质,同时考查了点到直线的距离公式,属于简单题.12、A【解析】根据周期求,根据最值点坐标求【详解】因为,因为时,所以因为,所以,选A.【点睛】本题考查由图像求三角函数解析式,考查基本分析求解能力,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、13【解析】由抛物线的定义可知:,从而得到,同理,分类讨论,根据不等式的性质,即可求得的最小值.【详解】因为,所以焦点,准线,由圆:,可知其圆心为,半径为,由抛物线的定义得:,又因为,所以,同理,当轴时,则,所以,

15、当的斜率存在且不为0时,设时,代入抛物线方程,得: ,所以,当且仅当,即时取等号,综上所述,的最小值为13,故答案是:13.【点睛】该题考查的是有关抛物线的简单性质的问题,涉及到的知识点有抛物线的定义,抛物线上的点到焦点的距离,直线与抛物线相交的问题,基本不等式求最值问题,在解题的过程中,注意认真审题是正确解题的关键.14、【解析】直接进行交集的运算即可【详解】解:A2,3,4,B3,5;AB3故答案为:3【点睛】考查列举法的定义以及交集的运算,属于基础题.15、【解析】首先求出的展开式的通项,再令,即可求出含的项及系数.【详解】设的展开式的通项为令,.令,.所以的展开式中,含的项为.所以的系

16、数为.故答案为:【点睛】本题主要考查根据二项式定理求指定项系数,熟练掌握二项式展开式的通项为解题的关键,属于中档题.16、60【解析】,它展开式中的第项为,令,则,的系数为,故答案为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)把两边同时乘以,然后结合极坐标与直角坐标的互化公式可得曲线的直角坐标方程,设直线的方程为,与曲线联立,利用根与系数的关系可得两个交点的中点的轨迹关于参数的参数方程;(2)化参数方程为普通方程,作出图形,数形结合即可求得曲线的长度【详解】解:(1)曲线C的直角坐标方程为.设直线l的方程为,设直线l与曲线C的交点为,联立直

17、线l与曲线C的方程得解得,设P的坐标为,则,代入l的方程得. 故的参数方程为.(2)由的参数方程得即.如图,圆C:圆心为,半径为2,圆D:圆心为,半径为2,曲线为劣弧,显然,所以的长度为.【点睛】本题考查简单曲线的极坐标方程,考查参数方程化普通方程,考查圆与圆位置关系的应用,考查计算能力,属于中档题18、(1);(2)【解析】(1)由题意利用正弦定理可得,由余弦定理可得,结合范围,可得的值(2)由基本不等式可求,利用三角形的面积公式即可求解【详解】解:(1)由题知,由正弦定理有,即,由余弦定理得,因为 则.(2),即,当且仅当时等号成立,当时,所以面积的最大值为.【点睛】本题主要考查了正弦定理

18、,余弦定理,基本不等式,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题19、(1),;(2)相交.【解析】()由点在直线上,可得所以直线的方程可化为从而直线的直角坐标方程为 ()由已知得圆的直角坐标方程为所以圆心为,半径以为圆心到直线的距离,所以直线与圆相交20、(1);(2);(3)见解析.【解析】(1)事件“取出的个球中恰有个颜色相同”分为两种情况“个球中有个红球”和“个球中有个黄球”,然后利用古典概型的概率公式和互斥事件的概率加法公式可计算出所求事件的概率;(2)计算出每次取球取到黄球的概率为,然后利用独立重复试验概率来计算出所求事件的概率;(3)由题意得出

19、的可能取值有、,利用排列组合思想求出随机变量在对应取值时的概率,于此可列出随机变量的分布列,并计算出随机变量的数学期望.【详解】(1)从盒中一次随机取出个球,记取出的个球中恰有个颜色相同为事件,则事件包含事件“个球中有和红球”和事件“个球中有个黄球”,由古典概型的概率公式和互斥事件的概率加法公式得,答:取出的个球颜色相同的概率;(2)盒中逐一取球,取后立即放回,每次取到黄球的概率为,记取次恰有次黄球为事件,则,答:取次恰有次黄球的概率;(3)的可能取值为、,则,随机变量的分布列为:所以,随机变量的数学期望为.【点睛】本题考查古典概型概率公式以及互斥事件概率加法公式的应用,同时也考查了独立重复试验概率公式以及随机变量分布列及其数学期望,解题时充分利用排列组合思想求出对应事件的概率,考查分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论