2021-2022学年四川省凉山州木里藏族自治县中学数学高二第二学期期末达标测试试题含解析_第1页
2021-2022学年四川省凉山州木里藏族自治县中学数学高二第二学期期末达标测试试题含解析_第2页
2021-2022学年四川省凉山州木里藏族自治县中学数学高二第二学期期末达标测试试题含解析_第3页
2021-2022学年四川省凉山州木里藏族自治县中学数学高二第二学期期末达标测试试题含解析_第4页
2021-2022学年四川省凉山州木里藏族自治县中学数学高二第二学期期末达标测试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题

2、目要求的。1用反证法证明命题“已知为非零实数,且,求证中至少有两个为正数”时,要做的假设是( )A中至少有两个为负数B中至多有一个为负数C中至多有两个为正数D中至多有两个为负数2设,则“”是“”的( )A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件3设,R,且,则ABCD4已知为抛物线上的不同两点,为抛物线的焦点,若,则( )AB10CD65已知,则的最小值( )ABCD6在数学归纳法的递推性证明中,由假设时成立推导时成立时,增加的项数是()ABCD7若函数的图象与直线相切,则()ABCD8已知集合,或,则( )ABCD9一次数学考试后,甲说:我是第一名,乙说:我是第一名

3、,丙说:乙是第一名。丁说:我不是第一名,若这四人中只有一个人说的是真话且获得第一名的只有一人,则第一名的是( )A甲B乙C丙D丁10定义在上的偶函数满足,当时,设函数,则函数与的图像所有交点的横坐标之和为()A2B4C6D811设数列, ()都是等差数列,若,则等于()A60B62C63D6612双曲线x2A23B2C3D二、填空题:本题共4小题,每小题5分,共20分。13设为数列的前项和,则_.14抛物线的焦点坐标是_15将正整数对作如下分组,第组为,第组为,第组为,第组为则第组第个数对为_16已知函数,则的最大值是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分

4、)电子商务公司对某市50000名网络购物者2017年度的消费情况进行统计,发现消费金额都在5000元到10000元之间,其频率分布直方图如下:(1)求图中的值,并求出消费金额不低于8000元的购物者共多少人;(2)若将频率视为概率,从购物者中随机抽取50人,记消费金额在7000元到9000元的人数为,求的数学期望和方差.18(12分)不等式的解集是 ,关于x的不等式的解集是 。(1)若,求; (2)若,求实数 的取值范围。19(12分)如图,在中,角所对的边分别为,若. (1)求角的大小;(2)若点在边上,且是的平分线,求的长.20(12分)求适合下列条件的圆锥曲线的标准方程:(1)抛物线的焦

5、点是椭圆的上顶点;(2)椭圆的焦距是8,离心率等于21(12分)在中,角的对边分别是,且满足.(1)求角的大小;(2)若,边上的中线的长为,求的面积.22(10分)选修4-4:坐标系与参数方程在直角坐标系中,直线的参数方程为,(为参数),圆的标准方程为.以坐标原点为极点, 轴正半轴为极轴建立极坐标系.(1)求直线和圆的极坐标方程;(2)若射线与直线的交点为,与圆的交点为,且点恰好为线段的中点,求的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】分析:用反证法证明某命题时,应先假设命题的否定成立,而命题的否定为:“a

6、、b、c中至少有二个为负数”,由此得出结论详解:用反证法证明某命题时,应先假设命题的否定成立,而:“中至少有二个为正数”的否定为:“中至少有二个为负数”故选A点睛:本题主要考查用反证法证明数学命题,把要证的结论进行否定,得到要证的结论的反面是解题的关键,着重考查了推理与论证能力2、A【解析】首先解这两个不等式,然后判断由题设能不能推出结论和由结论能不能推出题设,进而可以判断出正确的选项.【详解】, ,显然由题设能推出结论,但是由结论不能推出题设,因此“”是“”的充分不必要条件,故本题选A.【点睛】本题考查了充分条件、必要条件的判断,解决本问题的关键是正确求出不等式的解集.3、D【解析】分析:带

7、特殊值验证即可详解:排除A,B排除C故选D点睛:带特殊值是比较大小的常见方法之一4、C【解析】设,根据,可求得这些坐标间的关系,再结合两点在抛物线上,可求得,而,由此可得结论【详解】设,则,又,由,得,.故选C【点睛】本题考查向量的数乘的意义,考查抛物线的焦点弦问题掌握焦点弦长公式是解题基础:即对抛物线而言,是抛物线的过焦点的弦,则5、C【解析】向量,, 当t=0时,取得最小值.故答案为.6、C【解析】分析:分别计算当时, ,当成立时, ,观察计算即可得到答案详解:假设时成立,即 当成立时, 增加的项数是故选点睛:本题主要考查的是数学归纳法。考查了当和成立时左边项数的变化情况,考查了理解与应用

8、的能力,属于中档题。7、B【解析】设切点为,由可解得切点坐标与参数的值。【详解】设切点为,则由题意知即解得或者故选B【点睛】高考对导数几何意义的考查主要有以下几个命题角度:(1)已知切点求切线方程;(2)已知切线方程(或斜率)求切点或曲线方程;(3)已知曲线求切线倾斜角的取值范围8、C【解析】首先解绝对值不等式,从而利用“并”运算即可得到答案.【详解】根据题意得,等价于,解得,于是,故答案为C.【点睛】本题主要考查集合与不等式的综合运算,难度不大.9、C【解析】通过假设法来进行判断。【详解】假设甲说的是真话,则第一名是甲,那么乙说谎,丙也说谎,而丁说的是真话,而已知只有一个人说的是真话,故甲说

9、的不是真话,第一名不是甲;假设乙说的是真话,则第一名是乙,那么甲说谎,丙说真话,丁也说真话,而已知只有一个人说的是真话,故乙说谎,第一名也不是乙;假设丙说的是真话,则第一名是乙,所以乙说真话,甲说谎,丁说的是真话,而已知只有一个人说的是真话,故丙在说谎,第一名也不是乙;假设丁说的是真话,则第一名不是丁,而已知只有一个人说的是真话,那么甲也说谎,说明甲也不是第一名,同时乙也说谎,说明乙也不是第一名,第一名只有一人,所以只有丙才是第一名,故假设成立,第一名是丙。本题选C。【点睛】本题考查了推理能力。解决此类问题的基本方法就是假设法。10、B【解析】根据f(x)的周期和对称性得出函数图象,根据图象和

10、对称轴得出交点个数【详解】f(x+1)f(x),f(x+1)f(x+1)f(x),f(x)的周期为1f(1x)f(x1)f(x+1),故f(x)的图象关于直线x1对称又g(x)()|x1|(1x3)的图象关于直线x1对称,作出f(x)的函数图象如图所示:由图象可知两函数图象在(1,3)上共有4个交点,故选B【点睛】本题考查了函数图象变换,考查了函数对称性、周期性的判断及应用,考查了函数与方程的思想及数形结合思想,属于中档题11、A【解析】设数列的公差为,则由题意可得,求得的值,得到数列的通项公式,即可求解得值,得到答案.【详解】由题意,数列,都是等差数列,且,设数列的公差为,则有,即,解得,所

11、以,所以,故选A.【点睛】本题主要考查了等差数列的定义,以及等差数列的通项公式的应用,着重考查了推理与运算能力,属于基础题.12、A【解析】试题分析:双曲线焦点到渐近线的距离为b,所以距离为b=23考点:双曲线与渐近线二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】由已知条件可判断出数列为等比数列,再由可求出首项,再令即可求出的值.【详解】,且,即,则数列为等比数列且公比为,在中令得:故答案为:4【点睛】本题考查了已知的关系求数列通项,以及等比数列前项和公式,考查了学生的计算能力,属于一般题.14、【解析】抛物线即, ,所以焦点坐标为.15、【解析】根据归纳推理可知,每对数字中

12、两个数字不相等,且第一组每一对数字和为,第二组每一对数字和为,第三组每对数字和为,第组每一对数字和为, 第组第一对数为,第二对数为,第对数为,第对数为,故答案为.16、【解析】分析:对函数求导,研究函数的单调性,得到函数的单调区间,进而得到函数的最值.详解:函数, 设,函数在 故当t=时函数取得最大值,此时 故答案为:.点睛:这个题目考查了函数最值的求法,较为简单,求函数的值域或者最值常用的方法有:求导研究单调性,或者直接研究函数的单调性,或者应用均值不等式求最值.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1) 人(2) 【解析】由频率分布直方图计算出频率,然后用

13、样本估计总体计算出消费金额在到的概率,然后计算的数学期望和方差【详解】(1)消费金额不低于8000元的频率为,所以共人.(2)从购物者中任意抽取1人,消费金额在7000到9000的概率为,所以,.【点睛】本题结合频率分布直方图用样本估计总体,并计算相应值得数学期望和方差,只要运用公式即可得到结果,较为基础18、 (1) (2) 【解析】(1)解集合A,当解得集合B,从而可得;(2)由可得,对m进行讨论得出集合B的范围即可得出m范围.【详解】(1),解得即,由得,所以,所以;(2) 即 (i),所以且,得;(ii),所以且,得;综上,.【点睛】本题考查了分式不等式和二次不等式的解法,集合交集的运

14、算,集合补集运算的转化,属于中档题.19、 (1);(2).【解析】试题分析:(1)利用正弦定理将边化角,根据三角恒等变换即可得出,从而得出的大小;(2)利用余弦定理求出,根据是的平分线,可得,故而可求得结果.试题解析:(1)在中,,由正弦定理得,.(2)在中,由余弦定理得,即,解得,或(负值,舍去)是的平分线,,.20、 (1) (2) 或【解析】(1)根据题意,求出椭圆的上顶点坐标,即可得抛物线的焦点是(0,1),由抛物线的标准方程分析可得答案;(2)根据题意,由椭圆的焦距可得c的值,又由离心率计算可得a的值,据此计算可得b的值,分情况讨论椭圆的焦点位置,可得椭圆的标准方程,综合即可得答案

15、【详解】(1)根据题意,椭圆的上顶点坐标为(0,1),则抛物线的焦点是(0,1),则抛物线的方程为;(2)根据题意,椭圆的焦距是8,则2c=8,即c=4,又由椭圆的离心率等于,即,则a=5,则,若椭圆的焦点在x轴上,则其标准方程为:,若椭圆的焦点在y轴上,则其标准方程为:【点睛】本题考查椭圆的几何性质以及标准方程,涉及抛物线的标准方程,属于基础题21、(1)(2)【解析】(1)先后利用正弦定理余弦定理化简得到,即得B的大小;(2)设,则,所以,利用余弦定理求出m的值,再求的面积.【详解】解:(1)因为,由正弦定理,得,即.由余弦定理,得.因为,所以.(2)因为,所以.设,则,所以.在中,由余弦定理得,得,即,整理得,解得.所以.【点睛】本题主要考查正弦定理余弦定理解三角形,考查三角形的面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.22、(1).(2)【解析】分析:(1)将直线的参数方程利用代入法消去参数,可得直线的直角坐标方程,利用,可得直线的极坐标方程,圆的标准方程转化为一般方程,两边同乘以利用利用互化

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论