版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。11+x-x210A10B30C45D2102若(是虚数单位),则复数的模为( )ABCD3设,则( )ABCD4把边长为的正方形沿对角线折起,使得平面平面,形成三棱锥的正视图与俯视图如图所示,则侧视图的面积为()ABCD5设随机变量,
2、随机变量,若,则( )ABCD6如图,是正四面体的面上一点,点到平面距离与到点的距离相等,则动点的轨迹是( )A直线B抛物线C离心率为的椭圆D离心率为3的双曲线7已知曲线与恰好存在两条公切线,则实数的取值范围为( )ABCD8已知,则,的大小关系为()ABCD9如图1是把二进制数化为十制数的一个程序框图, 则判断框内应填入的条件是( )A . B . C . D . 否否开始是10下列四个命题中,其中错误的个数是()经过球面上任意两点,可以作且只可以作一个大圆;经过球直径的三等分点,作垂直于该直径的两个平面,则这两个平面把球面分成三部分的面积相等;球的面积是它大圆面积的四倍;球面上两点的球面距
3、离,是这两点所在截面圆上,以这两点为端点的劣弧的长A0B1C2D311下列说法正确的是( )A“f(0)”是“函数f(x)是奇函数”的充要条件B若p:,则:,C“若,则”的否命题是“若,则”D若为假命题,则p,q均为假命题12函数f(x)(x22x)ex的图象可能是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在中,角,所对的边分别为,且,则_.14的化简结果为_15随机变量服从二项分布,且,则等于_16东汉王充论衡宜汉篇:“且孔子所谓一世,三十年也.”,清代段玉裁说文解字注:“三十年为一世.按父子相继曰世”.“一世”又叫“一代”,到了唐朝,为了避李世民的讳,“一世”方改为
4、“一代”,当代中国学者测算“一代”平均为25年.另据美国麦肯锡公司的研究报告显示,全球家庭企业的平均寿命其实只有24年,其中只有约的家族企业可以传到第二代,能够传到第三代的家族企业数量为总量的,只有的家族企业在第三代后还能够继续为股东创造价值.根据上述材料,可以推断美国学者认为“一代”应为_年三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,若直线与函数,的图象均相切.(1)求实数的值;(2)当时,求在上的最值.18(12分)某仪器经过检验合格才能出厂,初检合格率为;若初检不合格,则需要进行调试,经调试后再次对其进行检验;若仍不合格,作为废品处理,再检合格率
5、为.每台仪器各项费用如表:项目生产成本检验费/次调试费出厂价金额(元)(1)求每台仪器能出厂的概率;(2)求生产一台仪器所获得的利润为元的概率(注:利润=出厂价-生产成本-检验费-调试费);(3)假设每台仪器是否合格相互独立,记为生产两台仪器所获得的利润,求的分布列和数学期望.19(12分)已知:已知函数()若曲线y=f(x)在点P(2,f(2)处的切线的斜率为6,求实数a;()若a=1,求f(x)的极值;20(12分)已知双曲线的右焦点是抛物线的焦点,直线与该抛物线相交于、两个不同的点,点是的中点,求(为坐标原点)的面积.21(12分)甲乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答
6、对者为本队赢得一分,答错得零分假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为且各人正确与否相互之间没有影响.用表示甲队的总得分.()求随机变量分布列; ()用A表示“甲、乙两个队总得分之和等于3”这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求P(AB).22(10分)在直角坐标系中,曲线的参数方程是(为参数),以该直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为()写出曲线的普通方程和直线的直角坐标方程;()设点,直线与曲线相交于,两点,且,求实数的值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合
7、题目要求的。1、B【解析】1+x-x210=(-1-x+x2)10=(x2-x)-110的展开式的通项公式为C10rC10-rkx210-r-k-1k2、D【解析】利用复数的乘法、除法法则将复数表示为一般形式,然后利用复数的求模公式计算出复数的模.【详解】因为,所以,所以,故选D.【点睛】本题考查复数的乘法、除法法则以及复数模的计算,对于复数相关问题,常利用复数的四则运算法则将复数表示为一般形式进行求解,考查计算能力,属于基础题.3、A【解析】根据复数除法运算得到,根据复数模长定义可求得结果.【详解】,.故选:.【点睛】本题考查复数模长的求解,涉及到复数的除法运算,属于基础题.4、C【解析】取
8、BD的中点E,连结CE,AE,平面ABD平面CBD,CEAE,三角形直角CEA是三棱锥的侧视图,BD=,CE=AE=,CEA的面积S=,故选C.5、A【解析】试题分析:随机变量,解得,故选C考点:1二项分布;2n次独立重复试验方差6、C【解析】分析:由题设条件将点P到平面ABC距离与到点V的距离相等转化成在面VBC中点P到V的距离与到定直线BC的距离比是一个常数,依据圆锥曲线的第二定义判断出其轨迹的形状详解:正四面体VABC面VBC不垂直面ABC,过P作PD面ABC于D,过D作DHBC于H,连接PH,可得BC面DPH,所以BCPH,故PHD为二面角VBCA的平面角令其为则RtPGH中,|PD|
9、:|PH|=sin(为VBCA的二面角的大小)又点P到平面ABC距离与到点V的距离相等,即|PV|=|PD|PV|:|PH|=sin1,即在平面VBC中,点P到定点V的距离与定直线BC的距离之比是一个常数sin,又在正四面体VABC,VBCA的二面角的大小有:sin=1,由椭圆定义知P点轨迹为椭圆在面SBC内的一部分故答案为:C点睛:(1)本题主要考查二面角、椭圆的定义、轨迹方程等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想(2)解答本题的关键是联想到圆锥曲线的第二定义.7、B【解析】设切点分别为和(s,t),再由导数求得斜率相等,得到构造函数由导数求得参数的范围。【详解】的导
10、数为的导数为设与曲线相切的切点为与曲线相切的切点为(s,t),则有公共切线斜率为又,即有,即为,即有则有即为令则,当时,递减,当时,递增,即有处取得极大值,也为最大值,且为由恰好存在两条公切线,即s有两解,可得a的取值范围是,故选B【点睛】可导函数y=f(x)在处的导数就是曲线y=f(x)在处的切线斜率,这就是导数的几何意义,在利用导数的几何意义求曲线切线方程时,要注意区分“在某点处的切线”与“过某点的切线”,已知y=f(x)在处的切线是,若求曲线y=f(x)过点(m,n)的切线,应先设出切点,把(m,n)代入,求出切点,然后再确定切线方程.而对于切线相同,则分别设切点求出切线方程,再两直线方
11、程系数成比例。8、C【解析】根据的单调性判断的大小关系,由判断出三者的大小关系.【详解】由,则.故选C.【点睛】本小题主要考查对数运算,考查对数函数的单调性,考查对数式比较大小,属于基础题.9、C【解析】略10、C【解析】结合球的有关概念:如球的大圆、球面积公式、球面距离等即可解决问题,对于球的大圆、球面积公式、球面距离等的含义的理解,是解决此题的关键.【详解】对于,若两点是球的一条直径的端点,则可以作无数个球的大圆,故错;对于三部分的面积都是,故正确对于,球面积=,是它大圆面积的四倍, 故正确;对于,球面上两点的球面距离,是这两点所在大圆上以这两点为端点的劣弧的长,故错.所以错误.所以C选项
12、是正确的.【点睛】本题考查球的性质,特别是求两点的球面距离,这两个点肯定在球面上,做一个圆使它经过这两个点,且这个圆的圆心在球心上,两点的球面距离对应的是这个圆两点之间的对应的较短的那个弧的距离.11、C【解析】根据四种命题之间的关系,对选项中的命题分析、判断即可【详解】对于A,f (0)0时,函数 f (x)不一定是奇函数,如f(x)x2,xR;函数 f (x) 是奇函数时,f(0)不一定等于零,如f(x),x0;是即不充分也不必要条件,A错误;对于B,命题p:,则p:x,x2x10,B错误;对于C,若,则sin的否命题是“若,则sin”,正确对于D,若pq为假命题,则p,q至少有一假命题,
13、错误;故选C【点睛】本题考查了命题真假的判断问题,涉及到奇函数的性质,特称命题的否定,原命题的否命题,复合命题与简单命题的关系等知识,是基础题12、B【解析】根据函数值的正负,以及单调性,逐项验证.【详解】,当或时,当时,选项不正确,令,当或,当,的递增区间是,递减区间是,所以选项不正确,选项正确.故选:B.【点睛】本题考查函数图像的识别,考查函数的单调性和函数值,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】直接利用余弦定理得到答案.【详解】,(舍去)故答案为2【点睛】本题考查了余弦定理,意在考查学生的计算能力.14、18【解析】由指数幂的运算与对数运算法则,即
14、可求出结果.【详解】因为.故答案为18【点睛】本题主要考查指数幂运算以及对数的运算,熟记运算法则即可,属于基础题型.15、900【解析】根据二项分布的期望和方差,列出关于和的方程组,可解出的值.【详解】由题意可得,解得,故答案为.【点睛】本题考查二项分布的数学期望和方差的计算,解题的关键就是这两个公式的应用,考查运算求解能力,属于基础题.16、20【解析】设美国学者认为的一代为年,然后可得出寿命在、的家族企业的频率分别为、,然后利用平均数公式列方程解出的值,即可得出所求结果【详解】设美国学者认为的一代为年,然后可得出寿命在、的家族企业的频率分别为、,则家族企业的平均寿命为,解得,因此,美国学者
15、认为“一代”应为年,故答案为.【点睛】本题考查平均数公式的应用,解题的关键要审清题意,将题中一些关键信息和数据收集起来,结合相应的条件或公式列等式或代数式进行求解,考查运算求解能力,属于中等题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),或;(2),.【解析】(1)由直线与二次函数相切,可由直线方程与二次函数关系式组成的方程组只有一个解,然后由判别式等于零可求出的值,再设出直线与函数图像的切点坐标,由切点处的导函数值等于切线的斜率可求出切点坐标,从而可求出的值;(2)对函数求导,使导函数为零,求出极值点,然后比较极值和端点处的函数值大小,可求出函数的最值.【详解】
16、(1)联立可得, 设直线与的图象相切于点,则,或当时, 当时, 或 (2)由(1),令则或;令则在和上单调递增,在上单调递减又,【点睛】此题考查导数的几何意义,利用导数求最值,属于基础题.18、(1);(2)(3)见解析【解析】试题分析:()每台仪器能出厂的对立事件为不能出厂,根据对立事件的概率可得结果;()由表可知生产一台仪器所获得的利润为元即初检不合格再次检测合格,根据相互独立事件同时发生的概率可得结果;()由题意可得可取,根据相互独立事件同时发生的概率计算出概率,可得分布列及期望.试题解析:()记每台仪器不能出厂为事件,则,所以每台仪器能出厂的概率()生产一台仪器利润为1600的概率()
17、可取,的分布列为:38003500320050020019、 (1)-2; (2)极小值为,极大值为.【解析】分析:(1)求出曲线y=f(x)在点P(2,f(2)处的导数值等于切线的斜率为6,即可求出;(2)通过a=1时,利用导函数为0,判断导数符号,即可求f(x)的极值.详解:()因为f(x)=x2+x+2a,曲线y=f(x)在点P(2,f(2)处的切线的斜率k=f(2)=2a2,2a2=6,a=2 ()当a=1时, ,f(x)=x2+x+2=(x+1)(x2)x(,1)1(1,2)2(2,+)f(x)0+0f(x)单调减 单调增 单调减所以f(x)的极大值为 ,f(x)的极小值为 点睛:本
18、题考查导数的综合应用,切线方程以及极值的求法,注意导函数的零点并不一定就是原函数的极值点所以在求出导函数的零点后一定要注意分析这个零点是不是原函数的极值点20、【解析】分析:由双曲线方程可得右焦点,即为抛物线的焦点,可得抛物线的方程,利用点差法得到直线的斜率为联立直线方程,可得y的二次方程,解得,利用割补法表示的面积为,带入即可得到结果.详解: 双曲线的左焦点的坐标为的焦点坐标为,因此抛物线的方程为设,则,为的中点,所以,故直线的方程为 直线过点, ,故直线的方程为,其与轴的交点为由得:,的面积为. 点睛:本题考查双曲线和抛物线的方程和性质,考查直线方程与抛物线的方程联立,考查了点差法,考查了利用割补思想表示面积,以及化简整理的运算能力,属于中档题21、()的分布列为0123P ()【解析】()由题意知,的可能取值为0,1,2,3,且所以的分布列为0123P()用C表示“甲得2分乙得1分”这一事件,用D表示“甲得3分乙得0分”这一事件,所以AB=CD,且C、D互斥,又由互斥事件的概率公式得22、();()或或【解析】()根据参数方程与普通方程互化原则、极坐标与直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国降雨量监测设备行业运行状况与需求前景预测研究报告(2024-2030版)
- 中国锌白铜市场营销策略与未来发展前景预测分析研究报告(2024-2030版)
- 中国钢铁行业节能减排行业发展方向与前景规划分析研究报告(2024-2030版)
- 中国超滤膜包行业市场现状分析及竞争格局与投资发展研究报告(2024-2030版)
- 中国缝纫机械行业发展动态与盈利前景预测研究报告(2024-2030版)
- 中国粉状消泡剂行业市场现状分析及竞争格局与投资发展研究报告(2024-2030版)
- 中国空中交通管制设备市场营销风险及前景竞争优势研究报告(2024-2030版)
- 中国磁控溅射镀膜机行业应用态势与前景动态预测研究报告(2024-2030版)
- 中国石蜡乳化剂行业竞争状况及需求前景预测研究报告(2024-2030版)
- 中国盐酸美他环素片市场战略综合规划与发展新趋势研究报告(2024-2030版)
- 居家养老服务管理(社区居家养老服务课件)
- 妊娠合并症 妊娠合并心脏病(妇产科护理课件)
- QC小组活动程序讲解(自定目标值类型)
- 市民中心信息系统运营维护方案
- 职业卫生检测考试题库(400题)
- 硫系玻璃和红外玻璃的区别
- 画法几何及水利土建制图习题答案
- 《合并同类项》赛课一等奖教学课件
- RITTAL威图空调中文说明书
- 12富起来到强起来 第一课时教案 道德与法治
- 生物质能发电技术应用中存在的问题及优化方案
评论
0/150
提交评论