




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1( )A0BC1D22复数的虚部为( )ABC1D23某科研单位准备把7名大学生分配到编号为1,2,3的三个实验室实习,若要求每个实验室分配到的大学生人数不小于该实验室的
2、编号,则不同的分配方案的种数为( )A280B455C355D3504函数的最小正周期为( )ABCD5某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如下图,则下面结论中错误的一个是( )A甲的极差是29B甲的中位数是24C甲罚球命中率比乙高D乙的众数是216二项式展开式中的常数项为( )ABCD7已知数列的前项和为,若,则( )AB0C1D28已知,则满足成立的取值范围是( )ABCD9已知A=|,B=|,则AB =A|或B|C|D|10 “所有的倍数都是的倍数,某奇数是的倍数,故该奇数是的倍数.”上述推理( )A大前提错误B小前提错误C结论错误D正确11
3、知,则,的大小关系为( )ABCD12在一次数学单元测验中,甲、乙、丙、丁四名考生只有一名获得了满分.这四名考生的对话如下,甲:我没考满分;乙:丙考了满分;丙:丁考了满分;丁:我没考满分.其中只有一名考生说的是真话,则考得满分的考生是( )A甲B乙C丙D丁二、填空题:本题共4小题,每小题5分,共20分。13若的展开式中常数项为96,则实数等于_14已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的左视图如图所示,则该三棱锥的体积是_;15设x,y满足约束条件,则的最小值为_.16若幂函数为上的增函数,则实数m的值等于_ 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1
4、2分)某运动员射击一次所得环数的分布列如下:8911141412现进行两次射击,且两次射击互不影响,以该运动员两次射击中最高环数作为他的成绩,记为(1)求该运动员两次命中的环数相同的概率;(2)求的分布列和数学期望18(12分)已知数列满足:,(R,N*)(1)若,求证:;(2)若,求证:19(12分)已知函数(1)若当时,恒成立,求实数的取值范围.(2)设,求证:当时, .20(12分)某工厂的某车间共有位工人,其中的人爱好运动。经体检调查,这位工人的健康指数(百分制)如下茎叶图所示。体检评价标准指出:健康指数不低于者为“身体状况好”,健康指数低于者为“身体状况一般”。(1)根据以上资料完成
5、下面的列联表,并判断有多大把握认为“身体状况好与爱好运动有关系”?身体状况好身体状况一般总计爱好运动不爱好运动总计(2)现将位工人的健康指数分为如下组:,其频率分布直方图如图所示。计算该车间中工人的健康指数的平均数,由茎叶图得到真实值记为,由频率分布直方图得到估计值记为,求与的误差值;(3)以该车间的样本数据来估计该厂的总体数据,若从该厂健康指数不低于者中任选人,设表示爱好运动的人数,求的数学期望。附:。21(12分)(学年上海市杨浦区高三数学一模)如图所示,用总长为定值的篱笆围成长方形的场地,以墙为一边,并用平行于一边的篱笆隔开.(1)设场地面积为,垂直于墙的边长为,试用解析式将表示成的函数
6、,并确定这个函数的定义域;(2)怎样围才能使得场地的面积最大?最大面积是多少?22(10分)已知函数.(1)若函数的图象在点处的切线方程为,求,的值;(2)当时,在区间上至少存在一个,使得成立,求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据定积分的意义和性质,计算即可得出.【详解】因为,故选C.【点睛】本题主要考查了含绝对值的被积函数的定积分求值,定积分的性质,属于中档题.2、A【解析】由复数除法化复数为代数形式,根据复数概念可得【详解】因为,所以复数的虚部为,故选:A.【点睛】本题考查复数的除
7、法运算,考查复数的概念属于简单题3、B【解析】每个实验室人数分配有三种情况,即1,2,4;1,3,3;2,2,3;针对三种情况进行计算组合即可【详解】每个实验室人数分配有三种情况,即1,2,4;1,3,3;2,2,3.当实验室的人数为1,2,4时,分配方案有种;当实验室的人数为1,3,3时,分配方案有种;当实验室的人数为2,2,3时,分配方案有种.故不同的分配方案有455种.选B.【点睛】本题考查排列组合的问题,解题注意先分类即可,属于基础题4、B【解析】先利用二倍角的余弦公式化简函数解析式,然后利用周期公式可求答案【详解】函数的最小正周期为:本题正确选项:【点睛】本题考查三角函数的周期性及其
8、求法,考查二倍角的余弦公式,属基础题5、B【解析】通过茎叶图找出甲的最大值及最小值求出极差判断出A对;找出甲中间的两个数,求出这两个数的平均数即数据的中位数,判断出D错;根据图的数据分布,判断出甲的平均值比乙的平均值大,判断出C对【详解】由茎叶图知甲的最大值为37,最小值为8,所以甲的极差为29,故A对甲中间的两个数为22,24,所以甲的中位数为故B不对甲的命中个数集中在20而乙的命中个数集中在10和20,所以甲的平均数大,故C对乙的数据中出现次数最多的是21,所以D对故选B【点睛】茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况茎叶图不能直接反映总体的分布情况,这就
9、需要通过茎叶图给出的数据求出数据的数字特征,进一步估计总体情况6、B【解析】求出二项展开式的通项,使得的指数为,即可得出常数项.【详解】通项为常数项为故选:B【点睛】本题主要考查了利用二项式定理求常数项,属于基础题.7、C【解析】首先根据得到数列为等差数列,再根据,即可算出的值.【详解】因为,所以数列为等差数列.因为,所以.因为,所以.故选:C【点睛】本题主要考查等差数列的性质,同时考查了等差中项,属于简单题.8、B【解析】 由题意,函数,满足,所以函数为偶函数,且当时,函数单调递增,当时,函数单调递减,又,所以,解得或,故选B.9、D【解析】根据二次不等式的解法得到B=|=,再根据集合的并集
10、运算得到结果.【详解】B=|=, A=|,则AB =|.故答案为:D.【点睛】高考对集合知识的考查要求较低,均是以小题的形式进行考查,一般难度不大,要求考生熟练掌握与集合有关的基础知识纵观近几年的高考试题,主要考查以下两个方面:一是考查具体集合的关系判断和集合的运算解决这类问题的关键在于正确理解集合中元素所具有属性的含义,弄清集合中元素所具有的形式以及集合中含有哪些元素二是考查抽象集合的关系判断以及运算10、D【解析】分析:要分析一个演绎推理是否正确,主要观察所给的大前提,小前提和结论是否都正确,根据三个方面都正确,得到结论详解:所有9的倍数都是3的倍数,某奇数是9的倍数,故某奇数是3的倍数,
11、大前提:所有9的倍数都是3的倍数,小前提:某奇数是9的倍数,结论:故某奇数是3的倍数,这个推理是正确的,故选D点睛:该题考查的是有关演绎推理的定义问题,在解决问题的过程中,需要先分清大前提、小前提和结论分别是什么,之后结合定义以及对应的结论的正确性得出结果.11、A【解析】由题易知:,故选A点睛:利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值的应用,有时候要借助其“桥梁”作用,来比较大小12、A【解析】分析四人说的
12、话,由丙、丁两人一定是一真一假,分丙为真与丁为真进行推理判断可得答案.【详解】解:分析四人说的话,由丙、丁两人一定是一真一假,若丙是真话,则甲也是真话,矛盾;若丁是真话,此时甲、乙、丙都是假话,甲考了满分,故选:A.【点睛】本题主要考查合理推理与演绎推理,由丙、丁两人一定是一真一假进行讨论是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、 【解析】的展开式的通项是 ,令 ,的展开式中常数项为可得 故答案为 .【方法点晴】本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1
13、)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.14、【解析】由左视图得出三棱锥中线面关系及棱的长度【详解】由左视图知三棱锥的高为,底面等腰三角形的底边长为,又底面等腰三角形的腰长为2,这个等腰三角形的面积为,故答案为:【点睛】本题考查棱锥的体积,解题是由左视图得出棱锥的高为1,底面等腰三角形的底边长为,从而由体积公式可求得棱锥的体积,本题还考查了空间想象能力15、【解析】先画出可行域,根据表示可行域内的点到定点的距离的平方,即可求出最小值。【详解】作出不等式组表示的可行域为一个三角形区域(包括边界),表
14、示可行域内的点到定点的距离的平方,由图可知,该距离的最小值为点到直线的距离,故.【点睛】本题考查线性规划,属于基础题。16、4【解析】由函数为幂函数得,求出的值,再由幂函数在上是增函数求出满足条件的值.【详解】由幂函数为幂函数,可得,解得或0,又幂函数在区间上是增函数, ,时满足条件,故答案为4.【点睛】本题主要考查幂函数的定义与性质,意在考查对基础知识的掌握与应用,属于中档题. 高考对幂函数要求不高,只需掌握简单幂函数的图象与性质即可三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)1.36;(2)见解析,9.2【解析】(1)先计算两次命中8环,9环,11环的概率,然
15、后可得结果.(2)列出的所有可能结果,并分别计算所对应的概率,然后列出分布列,并依据数学期望的公式,可得结果.【详解】(1)两次都命中8环的概率为两次都命中9环的概率为两次都命中11环的概率为设该运动员两次命中的环数相同的概率为(2)的可能取值为8,9,11 ,的分布列为8911116148136【点睛】本题考查离散型随机变量的分布列以及数学期望,重在于对随机变量的取值以及数学期望的公式的掌握,属基础题.18、(1)见解析(2)见解析【解析】(1)用数学归纳法证明结论即可;(2)因为(N*),则,然后用反证法证明当时有矛盾,所以原不等式成立即可.【详解】(1)当时,下面用数学归纳法证明:当时,
16、结论成立; 假设当时,有成立,则当时,因,所以时结论也成立综合可知(N*)成立 (2)因为(N*),则, 若,则当时,与矛盾所以【点睛】本题考查数列的递推公式、数学归纳法证明、反证法等知识,属于中档题.19、 (1) ;(2)证明见解析【解析】(1)解法一:求得函数导数并通分,对分成两种情况,结合函数的单调性、最值,求得实数的取值范围.解法二:将原不等式分离常数,得到,构造函数,利用导数结合洛必达法则,求得的取值范围,由此求得的取值范围.(2)解法一:先由(1)的结论,证得当时成立.再利用导数证得当时,也成立,由此证得不等式成立.解法二:将所要证明的不等式等价转化为,构造函数,利用导数证得,进
17、而证得,也即证得.【详解】解:(1)【解法一】由得:当时,由知,在区间上为增函数,当时,恒成立,所以当时,满足题意;当时,在区间上是减函数,在区间上是增函数.这时当时,令,则即在上为减函数,所以即在上的最小值,此时,当时,不可能恒成立,即有不满足题意.综上可知,当,使恒成立时,的取值范围是.【解法二】当时,等价于令,则只须使设在上为增函数,所以在上为增函数,当时,由洛必达法则知即当时,所以有即当,使恒成立时,则的取值范围是(2)解法一:由(1)知,当时,当时,又成立故只须在证明,当时,即可当时,又当时,所以,只须证明即可;设由得:当,时当时,即在区间上为增函数,在区间上为减函数,当时,成立综上
18、可知,当时,成立.(2)解法二:由(1)知当时,等价于设由得:当时,;当时,即在区间上为增函数,在区间上为减函数,当时,因为时,.所以所以成立.综上可知,当时,成立.【点睛】本小题主要考查利用导数研究不等式恒成立问题,考查利用导数证明不等式,考查分类讨论的数学思想,考查化归与转化的数学思想方法,难度较大,属于难题.20、(1)列联表见解析;有的把握认为“身体状况好与爱好运动有关系”;(2)误差值为;(3)数学期望【解析】(1)根据茎叶图补全列联表,计算可得,从而得到结论;(2)利用平均数公式求得真实值;利用频率直方图估计平均数的方法求得估计值,作差得到结果;(3)可知,利用二项分布数学期望计算公式求得结果.【详解】(1)由茎叶图可得列联表如下:身体状况好身体状况一般总计爱好运动不爱好运动总计有的把握认为“身体状况好与爱好运动有关系”(2)由茎叶图可得:真实值由直方图得:估计值误差值为:(3)从该厂健康指数不低于的员工中任选人,爱好运动的概率为:则 数学期望【点睛】本题考查
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论