黑龙江省哈尔滨市五常市山林一中学2023学年中考数学最后冲刺浓缩精华卷含答案解析_第1页
黑龙江省哈尔滨市五常市山林一中学2023学年中考数学最后冲刺浓缩精华卷含答案解析_第2页
黑龙江省哈尔滨市五常市山林一中学2023学年中考数学最后冲刺浓缩精华卷含答案解析_第3页
黑龙江省哈尔滨市五常市山林一中学2023学年中考数学最后冲刺浓缩精华卷含答案解析_第4页
黑龙江省哈尔滨市五常市山林一中学2023学年中考数学最后冲刺浓缩精华卷含答案解析_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、黑龙江省哈尔滨市五常市山林一中学2023学年中考数学最后冲刺浓缩精华卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列各数中,比1大1的是()A0 B1 C2 D32在直角坐标系中,设一质点M自P0(1,0)处向上运动一个单位至P1(1,1),然后向左运动2

2、个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处,如此继续运动下去,设Pn(xn,yn),n1,2,3,则x1+x2+x2018+x2019的值为()A1B3C1D20193如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()ABCD4下列实数中是无理数的是()AB22C5.Dsin455为了增强学生体质,学校发起评选“健步达人”活动,小明用计步器记录自己一个月(30天)每天走的步数,并绘制成如下统计表:步数(万步)1.01.21.11.41.3天数335712在每天所

3、走的步数这组数据中,众数和中位数分别是()A1.3,1.1B1.3,1.3C1.4,1.4D1.3,1.46下列运算正确的是()A3a+a=4aB3x22x=6x2C4a25a2=a2D(2x3)22x2=2x47如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上反比例函数(x0)的图象经过顶点B,则k的值为A12B20C24D328如图,ABC 中,AD 是中线,BC=8,B=DAC,则线段 AC 的长为( )A4B4C6D49我市某小区开展了“节约用水为环保作贡献”的活动,为了解居民用水情况,在小区随机抽查了10户家庭的月用水量,结果如下表:月用水量(吨)8910户数26

4、2则关于这10户家庭的月用水量,下列说法错误的是()A方差是4B极差是2C平均数是9D众数是910碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米0.000000001米,则0.5纳米用科学记数法表示为()A0.5109米B5108米C5109米D51010米11如图,O的直径AB垂直于弦CD,垂足为E.若,AC=3,则CD的长为A6BCD312四组数中:1和1;1和1;0和0;和1,互为倒数的是()ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,在ABC中,ACB90,ACBC3,将ABC折叠,使点

5、A落在BC边上的点D处,EF为折痕,若AE2,则sinBFD的值为_14如图,圆O的直径AB垂直于弦CD,垂足是E,A=22.5,OC=4,CD的长为_15如果a2b2=8,且a+b=4,那么ab的值是_16抛物线y=x22x+3的对称轴是直线_17如图,在矩形ABCD中,AB4,BC5,点E是边CD的中点,将ADE沿AE折叠后得到AFE延长AF交边BC于点G,则CG为_18(2017四川省攀枝花市)若关于x的分式方程无解,则实数m=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)某商场经营某种品牌的童装,购进时的单价是60元根据市场调查,在一段时

6、间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件写出销售量y件与销售单价x元之间的函数关系式;写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式;若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?20(6分)计算:.21(6分)如图,抛物线y=x22mx(m0)与x轴的另一个交点为A,过P(1,m)作PMx轴于点M,交抛物线于点B,点B关于抛物线对称轴的对称点为C(1)若m=2,求点A和点C的坐标;(2)令m1,连接CA,若ACP为直角三角形,求m的值;(3)在坐标轴上是否存

7、在点E,使得PEC是以P为直角顶点的等腰直角三角形?若存在,求出点E的坐标;若不存在,请说明理由22(8分)我市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为W万元(毛利润=销售额生产费用)(1)请直接写出y与x以及z与x之间的函数关系式;(写出自变量x的取值范围)(2)求W与x

8、之间的函数关系式;(写出自变量x的取值范围);并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?23(8分)如图,在顶点为P的抛物线y=a(x-h)2+k(a0)的对称轴1的直线上取点A(h,k+),过A作BCl交抛物线于B、C两点(B在C的左侧),点和点A关于点P对称,过A作直线ml又分别过点B,C作直线BEm和CDm,垂足为E,D在这里,我们把点A叫此抛物线的焦点,BC叫此抛物线的直径,矩形BCDE叫此抛物线的焦点矩形(1)直接写出抛物线y=x2的焦点坐标以及直径的长(2)求抛物线y=x2-

9、x+的焦点坐标以及直径的长(3)已知抛物线y=a(x-h)2+k(a0)的直径为,求a的值(4)已知抛物线y=a(x-h)2+k(a0)的焦点矩形的面积为2,求a的值直接写出抛物线y=x2-x+的焦点短形与抛物线y=x2-2mx+m2+1公共点个数分别是1个以及2个时m的值24(10分)正方形ABCD中,点P为直线AB上一个动点(不与点A,B重合),连接DP,将DP绕点P旋转90得到EP,连接DE,过点E作CD的垂线,交射线DC于M,交射线AB于N问题出现:(1)当点P在线段AB上时,如图1,线段AD,AP,DM之间的数量关系为 ;题探究:(2)当点P在线段BA的延长线上时,如图2,线段AD,

10、AP,DM之间的数量关系为 ;当点P在线段AB的延长线上时,如图3,请写出线段AD,AP,DM之间的数量关系并证明;问题拓展:(3)在(1)(2)的条件下,若AP=,DEM=15,则DM= 25(10分)如图,已知是直角坐标平面上三点.将先向右平移3个单位,再向上平移3个单位,画出平移后的图形;以点为位似中心,位似比为2,将放大,在轴右侧画出放大后的图形;填空:面积为 .26(12分)某景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用y1(

11、元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示(1)a= ,b= ;(2)确定y2与x之间的函数关系式:(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到该景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?27(12分)(1)计算:;(2)化简:2023学年模拟测试卷参考答案(含详细解析)一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【答案解析】用-1加上1,求出比-1大1的是多少即可【题目详解】-1+1=1,比-1大1的是1故选:A【答案点睛】本题

12、考查了有理数加法的运算,解题的关键是要熟练掌握: “先符号,后绝对值”2、C【答案解析】根据各点横坐标数据得出规律,进而得出x +x +x ;经过观察分析可得每4个数的和为2,把2019个数分为505组,即可得到相应结果.【题目详解】解:根据平面坐标系结合各点横坐标得出:x1、x2、x3、x4、x5、x6、x7、x8的值分别为:1,1,1,3,3,3,3,5;x1+x2+x71x1+x2+x3+x4111+32;x5+x6+x7+x8333+52;x97+x98+x99+x1002x1+x2+x20162(20164)1而x2017、x2018、x2019的值分别为:1009、1009、100

13、9,x2017+x2018+x20191009,x1+x2+x2018+x2019110091,故选C【答案点睛】此题主要考查规律型:点的坐标,解题关键在于找到其规律3、C【答案解析】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,据此可得【题目详解】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,所以其主视图为: 故选C【答案点睛】考查了三视图的知识,主视图是从物体的正面看得到的视图4、D【答案解析】A、是有理数,故A选项错误;B、是有理数,故B选项错误;C、是有理数,故C选项错误;D、是无限

14、不循环小数,是无理数,故D选项正确;故选:D5、B【答案解析】在这组数据中出现次数最多的是1.1,得到这组数据的众数;把这组数据按照从小到大的顺序排列,第15、16个数的平均数是中位数【题目详解】在这组数据中出现次数最多的是1.1,即众数是1.1要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第15、16个两个数都是1.1,所以中位数是1.1故选B【答案点睛】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求6、D【答案解析】根据合并同类项、单项式的乘法、积的乘方和单项式的乘法逐项计算,结合排除法即

15、可得出答案.【题目详解】A. 3a+a=2a,故不正确; B. 3x22x=6x3,故不正确;C. 4a25a2=-a2 ,故不正确; D. (2x3)22x2=4x62x2=2x4,故正确;故选D.【答案点睛】本题考查了合并同类项、单项式的乘法、积的乘方和单项式的乘法,熟练掌握它们的运算法则是解答本题的关键.7、D【答案解析】如图,过点C作CDx轴于点D,点C的坐标为(3,4),OD=3,CD=4.根据勾股定理,得:OC=5.四边形OABC是菱形,点B的坐标为(8,4).点B在反比例函数(x0)的图象上,.故选D.8、B【答案解析】由已知条件可得,可得出,可求出AC的长【题目详解】解:由题意

16、得:B=DAC,ACB=ACD,所以,根据“相似三角形对应边成比例”,得,又AD 是中线,BC=8,得DC=4,代入可得AC=,故选B.【答案点睛】本题主要考查相似三角形的判定与性质灵活运用相似的性质可得出解答9、A【答案解析】分析:根据极差=最大值-最小值;平均数指在一组数据中所有数据之和再除以数据的个数;一组数据中出现次数最多的数据叫做众数,以及方差公式S2= (x1-)2+(x2-)2+(xn-)2,分别进行计算可得答案详解:极差:10-8=2,平均数:(82+96+102)10=9,众数为9,方差:S2= (8-9)22+(9-9)26+(10-9)22=0.4,故选A点睛:此题主要考

17、查了极差、众数、平均数、方差,关键是掌握各知识点的计算方法10、D【答案解析】解:0.5纳米=0.50.000 000 001米=0.000 000 000 5米=51010米故选D点睛:在负指数科学计数法 中,其中 ,n等于第一个非0数字前所有0的个数(包括下数点前面的0).11、D【答案解析】解:因为AB是O的直径,所以ACB=90,又O的直径AB垂直于弦CD,所以在RtAEC 中,A=30,又AC=3,所以CE=AB=,所以CD=2CE=3,故选D.【答案点睛】本题考查圆的基本性质;垂经定理及解直角三角形,综合性较强,难度不大.12、C【答案解析】根据倒数的定义,分别进行判断即可得出答案

18、【题目详解】1和1;11=1,故此选项正确;-1和1;-11=-1,故此选项错误;0和0;00=0,故此选项错误;和1,-(-1)=1,故此选项正确;互为倒数的是:,故选C【答案点睛】此题主要考查了倒数的概念及性质倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数二、填空题:(本大题共6个小题,每小题4分,共24分)13、【答案解析】分析:过点D作DGAB于点G.根据折叠性质,可得AE=DE=2,AF=DF,CE=1,在RtDCE中,由勾股定理求得,所以DB=;在RtABC中,由勾股定理得;在RtDGB中,由锐角三角函数求得,;设AF=DF=x,则FG= ,在RtDFG中,根据勾股定理得

19、方程=,解得,从而求得.的值详解:如图所示,过点D作DGAB于点G.根据折叠性质,可知AEFDEF,AE=DE=2,AF=DF,CE=AC-AE=1,在RtDCE中,由勾股定理得,DB=;在RtABC中,由勾股定理得;在RtDGB中,;设AF=DF=x,得FG=AB-AF-GB=,在RtDFG中,即=,解得,=.故答案为.点睛:主要考查了翻折变换的性质、勾股定理、锐角三件函数的定义;解题的关键是灵活运用折叠的性质、勾股定理、锐角三角函数的定义等知识来解决问题14、【答案解析】测试卷分析:因为OC=OA,所以ACO=,所以AOC=45,又直径垂直于弦,所以CE=,所以CD=2CE=考点:1解直角

20、三角形、2垂径定理15、1【答案解析】根据(a+b)(a-b)=a1-b1,可得(a+b)(a-b)=8,再代入a+b=4可得答案【题目详解】a1-b1=8,(a+b)(a-b)=8,a+b=4,a-b=1,故答案是:1【答案点睛】考查了平方差,关键是掌握(a+b)(a-b)=a1-b116、x=1【答案解析】把解析式化为顶点式可求得答案【题目详解】解:y=x2-2x+3=(x-1)2+2,对称轴是直线x=1,故答案为x=1【答案点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h,k)17、【答案解析】如图,作辅助线

21、,首先证明EFGECG,得到FGCG(设为x ),FEGCEG;同理可证AFAD5,FEADEA,进而证明AEG为直角三角形,运用相似三角形的性质即可解决问题【题目详解】连接EG;四边形ABCD为矩形,DC90,DCAB4;由题意得:EFDEEC2,EFGD90;在RtEFG与RtECG中,RtEFGRtECG(HL),FGCG(设为x ),FEGCEG;同理可证:AFAD5,FEADEA,AEG18090,而EFAG,可得EFGAFE, 225x,x,CG,故答案为:.【答案点睛】此题考查矩形的性质,翻折变换的性质,以考查全等三角形的性质及其应用、射影定理等几何知识点为核心构造而成;对综合的

22、分析问题解决问题的能力提出了一定的要求18、3或1【答案解析】解:方程去分母得:1+3(x1)=mx,整理得:(m3)x=2当整式方程无解时,m3=0,m=3;当整式方程的解为分式方程的增根时,x=1,m3=2,m=1综上所述:m的值为3或1故答案为3或1三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1);(2);(3)最多获利4480元.【答案解析】(1)销售量y为200件加增加的件数(80 x)20;(2)利润w等于单件利润销售量y件,即W=(x60)(20 x+1800),整理即可;(3)先利用二次函数的性质得到w=20 x2+3000 x108

23、000的对称轴为x=75,而20 x+1800240,x78,得76x78,根据二次函数的性质得到当76x78时,W随x的增大而减小,把x=76代入计算即可得到商场销售该品牌童装获得的最大利润【题目详解】(1)根据题意得,y=200+(80 x)20=20 x+1800,所以销售量y件与销售单价x元之间的函数关系式为y=20 x+1800(60 x80);(2)W=(x60)y=(x60)(20 x+1800)=20 x2+3000 x108000,所以销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式为:W=20 x2+3000 x108000;(3)根据题意得,20 x+18002

24、40,解得x78,76x78,w=20 x2+3000 x108000,对称轴为x=75,a=200,抛物线开口向下,当76x78时,W随x的增大而减小,x=76时,W有最大值,最大值=(7660)(2076+1800)=4480(元)所以商场销售该品牌童装获得的最大利润是4480元【答案点睛】二次函数的应用20、 【答案解析】【分析】括号内先进行通分,进行分式的加减法运算,然后再与括号外的分式进行分式乘除法运算即可.【题目详解】原式= =.【答案点睛】本题考查了分式的混合运算,熟练掌握有关分式的运算法则是解题的关键.21、(1)A(4,0),C(3,3);(2) m=;(3) E点的坐标为(

25、2,0)或(,0)或(0,4);【答案解析】方法一:(1)m=2时,函数解析式为y=,分别令y=0,x=1,即可求得点A和点B的坐标, 进而可得到点C的坐标;(2) 先用m表示出P, A C三点的坐标,分别讨论APC=,ACP=,PAC=三种情况, 利用勾股定理即可求得m的值;(3) 设点F(x,y)是直线PE上任意一点,过点F作FNPM于N,可得RtFNPRtPBC,NP:NF=BC:BP求得直线PE的解析式,后利用PEC是以P为直角顶点的等腰直角三角形求得E点坐标.方法二:(1)同方法一.(2) 由ACP为直角三角形, 由相互垂直的两直线斜率相乘为-1,可得m的值;(3)利用PEC是以P为

26、直角顶点的等腰直角三角形,分别讨论E点再x轴上,y轴上的情况求得E点坐标【题目详解】方法一:解:(1)若m=2,抛物线y=x22mx=x24x,对称轴x=2,令y=0,则x24x=0,解得x=0,x=4,A(4,0),P(1,2),令x=1,则y=3,B(1,3),C(3,3)(2)抛物线y=x22mx(m1),A(2m,0)对称轴x=m,P(1,m)把x=1代入抛物线y=x22mx,则y=12m,B(1,12m),C(2m1,12m),PA2=(m)2+(2m1)2=5m24m+1,PC2=(2m2)2+(1m)2=5m210m+5,AC2=1+(12m)2=24m+4m2,ACP为直角三角

27、形,当ACP=90时,PA2=PC2+AC2,即5m24m+1=5m210m+5+24m+4m2,整理得:4m210m+6=0,解得:m=,m=1(舍去),当APC=90时,PA2+PC2=AC2,即5m24m+1+5m210m+5=24m+4m2,整理得:6m210m+4=0,解得:m=,m=1,和1都不符合m1,故m=(3)设点F(x,y)是直线PE上任意一点,过点F作FNPM于N,FPN=PCB,PNF=CBP=90,RtFNPRtPBC,NP:NF=BC:BP,即=,y=2x2m,直线PE的解析式为y=2x2m令y=0,则x=1+,E(1+m,0),PE2=(m)2+(m)2=,=5m

28、210m+5,解得:m=2,m=,E(2,0)或E(,0),在x轴上存在E点,使得PEC是以P为直角顶点的等腰直角三角形,此时E(2,0)或E(,0);令x=0,则y=2m,E(0,2m)PE2=(2)2+12=55m210m+5=5,解得m=2,m=0(舍去),E(0,4)y轴上存在点E,使得PEC是以P为直角顶点的等腰直角三角形,此时E(0,4),在坐标轴上是存在点E,使得PEC是以P为直角顶点的等腰直角三角形,E点的坐标为(2,0)或(,0)或(0,4);方法二:(1)略(2)P(1,m),B(1,12m),对称轴x=m,C(2m1,12m),A(2m,0),ACP为直角三角形,ACAP

29、,ACCP,APCP,ACAP,KACKAP=1,且m1,m=1(舍)ACCP,KACKCP=1,且m1,=1,m=,APCP,KAPKCP=1,且m1,=1,m=(舍)(3)P(1,m),C(2m1,12m),KCP=,PEC是以P为直角顶点的等腰直角三角形,PEPC,KPEKCP=1,KPE=2,P(1,m),lPE:y=2x2m,点E在坐标轴上,当点E在x轴上时,E(,0)且PE=PC,(1)2+(m)2=(2m11)2+(12m+m)2,m2=5(m1)2,m1=2,m2=,E1(2,0),E2(,0),当点E在y轴上时,E(0,2m)且PE=PC,(10)2+(m+2+m)2=(2m

30、11)2+(12m+m)2,1=(m1)2,m1=2,m2=0(舍),E(0,4),综上所述,(2,0)或(,0)或(0,4)【答案点睛】本题主要考查二次函数的图象与性质. 扩展:设坐标系中两点坐标分别为点A(), 点B(), 则线段AB的长度为:AB=.设平面内直线AB的解析式为:,直线CD的解析式为:(1)若AB/CD,则有:;(2)若ABCD,则有:.22、(1)y=x1z=x+30(0 x100);(1)年产量为75万件时毛利润最大,最大毛利润为1115万元;(3)今年最多可获得毛利润1080万元【答案解析】(1)利用待定系数法可求出y与x以及z与x之间的函数关系式;(1)根据(1)的

31、表达式及毛利润销售额生产费用,可得出w与x的函数关系式,再利用配方法求出最值即可;(3)首先求出x的取值范围,再利用二次函数增减性得出答案即可.【题目详解】(1)图可得函数经过点(100,1000),设抛物线的解析式为yax1(a0),将点(100,1000)代入得:100010000a,解得:a,故y与x之间的关系式为yx1图可得:函数经过点(0,30)、(100,10),设zkxb,则,解得: ,故z与x之间的关系式为zx30(0 x100);(1)Wzxyx130 xx1x130 x(x1150 x)(x75)11115,0,当x75时,W有最大值1115,年产量为75万件时毛利润最大,

32、最大毛利润为1115万元;(3)令y360,得x1360,解得:x60(负值舍去),由图象可知,当0y360时,0 x60,由W(x75)11115的性质可知,当0 x60时,W随x的增大而增大,故当x60时,W有最大值1080,答:今年最多可获得毛利润1080万元【答案点睛】本题主要考查二次函数的应用以及待定系数法求一次函数解析式,注意二次函数最值的求法,一般用配方法.23、(1)4(1)4(3)(4)a=;当m=1-或m=5+时,1个公共点,当1-m1或5m5+时,1个公共点,【答案解析】(1)根据题意可以求得抛物线y=x1的焦点坐标以及直径的长;(1)根据题意可以求得抛物线y=x1-x+

33、的焦点坐标以及直径的长;(3)根据题意和y=a(x-h)1+k(a0)的直径为,可以求得a的值;(4)根据题意和抛物线y=ax1+bx+c(a0)的焦点矩形的面积为1,可以求得a的值;根据(1)中的结果和图形可以求得抛物线y=x1-x+的焦点矩形与抛物线y=x1-1mx+m1+1公共点个数分别是1个以及1个时m的值【题目详解】(1)抛物线y=x1,此抛物线焦点的横坐标是0,纵坐标是:0+=1,抛物线y=x1的焦点坐标为(0,1),将y=1代入y=x1,得x1=-1,x1=1,此抛物线的直径是:1-(-1)=4;(1)y=x1-x+=(x-3)1+1,此抛物线的焦点的横坐标是:3,纵坐标是:1+

34、=3,焦点坐标为(3,3),将y=3代入y=(x-3)1+1,得3=(x-3)1+1,解得,x1=5,x1=1,此抛物线的直径时5-1=4;(3)焦点A(h,k+),k+=a(x-h)1+k,解得,x1=h+,x1=h-,直径为:h+-(h-)=,解得,a=,即a的值是;(4)由(3)得,BC=,又CD=AA=所以,S=BCCD=1解得,a=;当m=1-或m=5+时,1个公共点,当1-m1或5m5+时,1个公共点,理由:由(1)知抛,物线y=x1-x+的焦点矩形顶点坐标分别为:B(1,3),C(5,3),E(1,1),D(5,1),当y=x1-1mx+m1+1=(x-m)1+1过B(1,3)时

35、,m=1-或m=1+(舍去),过C(5,3)时,m=5-(舍去)或m=5+,当m=1-或m=5+时,1个公共点;当1-m1或5m5+时,1个公共点由图可知,公共点个数随m的变化关系为当m1-时,无公共点;当m=1-时,1个公共点;当1-m1时,1个公共点;当1m5时,3个公共点;当5m5+时,1个公共点;当m=5+时,1个公共点;当m5+时,无公共点;由上可得,当m=1-或m=5+时,1个公共点;当1-m1或5m5+时,1个公共点【答案点睛】考查了二次函数综合题,解答本题的关键是明确题意,知道什么是抛物线的焦点、直径、焦点四边形,找出所求问题需要的条件,利用数形结合的思想和二次函数的性质、矩形

36、的性质解答24、 (1) DM=AD+AP ;(2) DM=ADAP ; DM=APAD ;(3) 3或1【答案解析】(1)根据正方形的性质和全等三角形的判定和性质得出ADPPFN,进而解答即可;(2)根据正方形的性质和全等三角形的判定和性质得出ADPPFN,进而解答即可;根据正方形的性质和全等三角形的判定和性质得出ADPPFN,进而解答即可;(3)分两种情况利用勾股定理和三角函数解答即可【题目详解】(1)DM=AD+AP,理由如下:正方形ABCD,DC=AB,DAP=90,将DP绕点P旋转90得到EP,连接DE,过点E作CD的垂线,交射线DC于M,交射线AB于N,DP=PE,PNE=90,D

37、PE=90,ADP+DPA=90,DPA+EPN=90,DAP=EPN,在ADP与NPE中,ADPNPE(AAS),AD=PN,AP=EN,AN=DM=AP+PN=AD+AP;(2)DM=ADAP,理由如下:正方形ABCD,DC=AB,DAP=90,将DP绕点P旋转90得到EP,连接DE,过点E作CD的垂线,交射线DC于M,交射线AB于N,DP=PE,PNE=90,DPE=90,ADP+DPA=90,DPA+EPN=90,DAP=EPN,在ADP与NPE中,ADPNPE(AAS),AD=PN,AP=EN,AN=DM=PNAP=ADAP;DM=APAD,理由如下:DAP+EPN=90,EPN+PEN=90,DAP=PEN,又A=PNE=90,DP=PE,DAPPEN,AD=PN,DM=AN=APPN=A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论