




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1关于x的不等式的解集中,恰有3个整数,则a的取值范围是()ABCD(4,5)2函数导数是( )ABCD3已知一袋中有标有号码、的卡片各一张,每次从中取出一张,记下号码后放回,当三种号码的卡片全部取出时即停止,则恰好取次卡片时停止的概率
2、为( )ABCD4观察下列各式:则()A28B76C123D1995已知抛物线和直线,过点且与直线垂直的直线交抛物线于两点,若点关于直线对称,则( )A1B2C4D66若关于的线性回归方程是由表中提供的数据求出,那么表中的值为( )345634ABCD7下列不等式中正确的有( );ABCD8已知函数,若是函数的唯一极值点,则实数k的取值范围是()ABCD9已知曲线在点处的切线的倾斜角为,则的值为( )ABCD10把边长为的正方形沿对角线折起,使得平面平面,形成三棱锥的正视图与俯视图如图所示,则侧视图的面积为()ABCD11对于平面、和直线、,下列命题中真命题是( )A若,则B若,则C若则D若,
3、则12若函数对任意都有成立,则()ABCD与的大小不确定二、填空题:本题共4小题,每小题5分,共20分。13在空间四边形中,若分别是的中点,是上点,且,记,则_.14已知等差数列满足,且,成等比数列,则的所有值为_.15已知数列是正项数列,是数列的前项和,且满足.若,是数列的前项和,则_.16已知,则的展开式中常数项为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数(aR)(1)讨论yf(x)的单调性;(2)若函数f(x)有两个不同零点x1,x2,求实数a的范围并证明18(12分)已知是虚数单位,复数,复数的共轭复数.(1)若,求实数的值;(2)若是纯虚数
4、,求.19(12分)如图,在四棱锥中,底面是矩形,平面平面, ,点在棱上, ,点是棱的中点,求证:(1) 平面;(2) 平面.20(12分)已知函数f(x)=xlnx,(I)判断曲线y=f(x)在点1,f(1)处的切线与曲线y=g(x)的公共点个数;(II)若函数y=f(x)-g(x)有且仅有一个零点,求a的值;(III)若函数y=f(x)+g(x)有两个极值点x1,x2,且21(12分)小威初三参加某高中学校的数学自主招生考试,这次考试由十道选择题组成,得分要求是:做对一道题得1分,做错一道题扣去1分,不做得0分,总得分7分就算及格,小威的目标是至少得7分获得及格,在这次考试中,小威确定他做
5、的前六题全对,记6分,而他做余下的四道题中,每道题做对的概率均为p,考试中,小威思量:从余下的四道题中再做一题并且及格的概率;从余下的四道题中恰做两道并且及格的概率,他发现,只做一道更容易及格. (1)设小威从余下的四道题中恰做三道并且及格的概率为,从余下的四道题中全做并且及格的概率为,求及;(2)由于p的大小影响,请你帮小威讨论:小威从余下的四道题中恰做几道并且及格的概率最大?22(10分)已知椭圆:的上顶点为,右顶点为,直线与圆相切于点.()求椭圆的标准方程;()设椭圆的左、右焦点分别为、,过且斜率存在的直线与椭圆相交于,两点,且,求直线的方程. 参考答案一、选择题:本题共12小题,每小题
6、5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】不等式等价转化为,当时,得,当时,得,由此根据解集中恰有3个整数解,能求出的取值范围。【详解】关于的不等式,不等式可变形为,当时,得,此时解集中的整数为2,3,4,则;当时,得,此时解集中的整数为-2,-1,0,则故a的取值范围是,选:A。【点睛】本题难点在于分类讨论解含参的二次不等式,由于二次不等式对应的二次方程的根大小不确定,所以要对和1的大小进行分类讨论。其次在观察的范围的时候要注意范围的端点能否取到,防止选择错误的B选项。2、A【解析】根据导数的基本公式和运算法则求导即可【详解】, 故选:A【点睛】本题考
7、查了导数的基本公式和运算法则,属于基础题3、B【解析】分析:由题意结合排列组合知识和古典概型计算公式整理计算即可求得最终结果.详解:根据题意可知,取5次卡片可能出现的情况有种;由于第5次停止抽取,所以前四次抽卡片中有且只有两种编号,所以总的可能有种;所以恰好第5次停止取卡片的概率为.本题选择B选项.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举(2)注意区分排列与组合,以及计数原理的正确使用.4、C【解析】试题分析:观察可得各式的值构成数列1,3,4,7,1
8、1,其规律为从第三项起,每项等于其前相邻两项的和,所求值为数列中的第十项继续写出此数列为1,3,4,7,11,18,29,47,76,123,第十项为123,即考点:归纳推理5、B【解析】由于直线与直线垂直,且直线的斜率为1,所以直线的斜率为,而直线过点,所以可求出直线的方程,将直线的方程与抛物线方程联立成方程组,求出的中点坐标,然后将其坐标代入中可求出的值.【详解】解:由题意可得直线的方程为,设,由,得,所以,所以的中点坐标为,因为点关于直线对称,所以,解得故选:B【点睛】此题考查直线与抛物线的位置关系,点关于直线的对称问题,属于基础题.6、C【解析】由表可得样本中心点的坐标为,根据线性回归
9、方程的性质可得,解出,故选C.7、B【解析】逐一对每个选项进行判断,得到答案.【详解】,设函数,递减,即,正确,设函数,在递增,在递减, ,即,正确,由知,设函数,在递减,在递增,即正确答案为B【点睛】本题考查了利用导函数求函数的单调性进而求最值来判断不等式关系,意在考查学生的计算能力.8、A【解析】由的导函数形式可以看出,需要对k进行分类讨论来确定导函数为0时的根【详解】解:函数的定义域是,是函数的唯一一个极值点是导函数的唯一根,在无变号零点,即在上无变号零点,令,因为,所以在上单调递减,在上单调递增所以的最小值为,所以必须,故选:A【点睛】本题考查由函数的导函数确定极值问题对参数需要进行讨
10、论9、D【解析】利用导数求出,由可求出的值【详解】,由题意可得,因此,故选D【点睛】本题考查导数的几何意义,考查导数的运算、直线的倾斜角和斜率之间的关系,意在考查函数的切线斜率与导数之间的关系,考查计算能力,属于中等题10、C【解析】取BD的中点E,连结CE,AE,平面ABD平面CBD,CEAE,三角形直角CEA是三棱锥的侧视图,BD=,CE=AE=,CEA的面积S=,故选C.11、C【解析】若由线面垂直的判定定理知,只有当和为相交线时,才有错误;若此时由线面平行的判定定理可知,只有当在平面外时,才有错误;由面面平行的性质定理:若两平面平行,第三个平面与他们都相交,则交线平行,可判断,若,则为
11、真命题, 正确;若此时由面面平行的判定定理可知,只有当、为相交线时,才有错误.故选C.考点:考查直线与直线,直线与平面,平面与平面的位置关系.12、A【解析】构造函数,利用导数可判断g(x)的单调性,由单调性可得g(ln3)与g(ln5)的大小关系,整理即可得到答案【详解】解:令,则,因为对任意都有,所以,即在R上单调递增,又,所以,即,即,故选:A【点睛】本题考查导数的运算及利用导数研究函数的单调性,解决本题的关键是根据选项及已知条件合理构造函数,利用导数判断函数的单调性,属中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由条件可得【详解】因为,分别是的中点所以所以故答
12、案为:【点睛】本题考查的是空间向量的线性运算,较简单.14、3,4【解析】先设等差数列公差为,根据题意求出公差,进而可求出结果.【详解】设等差数列公差为,因为,且,成等比数列,所以,即,解得或.所以或.故答案为3,4【点睛】本题主要考查等差数列的基本量的计算,熟记等差数列的通项公式即可,属于基础题型.15、【解析】利用将变为,整理发现数列为等差数列,求出,进一步可以求出,再将,代入,发现可以裂项求的前99项和。【详解】当时,符合,当时,符合,【点睛】一般公式的使用是将变为,而本题是将变为,给后面的整理带来方便。先求,再求,再求,一切都顺其自然。16、-32【解析】n,二项式的展开式的通项为,令
13、0,则r3,展开式中常数项为(2)38432.故答案为-32.点睛:求二项展开式有关问题的常见类型及解题策略:(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2),证明见解析【解析】(1)先求得函数的单调区间,然后求函数的导数,对分成两种情况,分类讨论函数的单调区间.(2)令,分离常数,构造函数,利用导数求得的单调区间和最大值,结合图像求得的取值范围.构造函数(),利用导数证得
14、在成立,从而证得在上成立.根据的单调性证得.【详解】函数的定义域为当时,函数在上为增函数;当时,有,在有,即,综上:当时,函数在上为增函数;当时,.(2)有两个不同的零点,即有两个不同的根,即即 有两个不同的交点;,当时,故.由上设令()当时,故在上为增函数,从而有,即,而 则,又因为所以, 又,故,即证.【点睛】本小题主要考查利用导数研究函数的单调区间和最值,考查利用导数研究零点问题,考查利用导数证明不等式,综合性很强,属于难题.18、(1)4;(2).【解析】(1)先求出,再根据,求出实数的值;(2)由已知得,再根据是纯虚数求出a的值即得解.【详解】(1)由已知得(2)由已知得是纯虚数,,
15、解得,.【点睛】本题主要考查复数的计算和复数的概念,考查复数模的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.19、(1)见解析;(2)见解析【解析】分析:(1),所以点是棱的中点,所以,所以,所以平面. (2)先证明平面所以,又因为,所以平面.详解:证明:(1)因为在中, ,所以点是棱的中点.又点是棱的中点,所以是的中位线,所以.因为底面是矩形,以,所以.又平面, 平面,所以平面.(2)因为平面平面, 平面,平面平面,所以平面.又平面,所以.因为, ,平面,平面,所以平面.点睛:线面垂直的判定和性质定理的应用是高考一直以来的一个热点,把握该知识点的关键在于判定定理和性质定理要熟练掌
16、握理解,见到面面垂直一般都要想到其性质定理,这是解题的关键.20、(I)详见解析;(II)a=3;(III)a【解析】(I)利用导函数求出函数y=f(x)在点(1,f(1))处的切线方程,和函数y=g(x)联立后由判别式分析求解公共点个数;(II)写出函数y=f(x)-g(x)表达式,由y=0得到a=x+2x+lnx,求函数h(x)=x+(III)写出函数y=f(x)+g(x)的表达式,构造辅助函数t(x)=-x2+ax-2+xlnx,由原函数的极值点是其导函数的零点分析导函数对应方程根的情况,分离参数a后构造新的辅助函数,求函数的最小值,然后分析当a大于函数最小值的情况,进一步求出当x【详解
17、】解:(I)由f(x)=xlnx,得f(x)=lnx+1,f(1)=1,又f(1)=0,曲线y=f(x)在点(1,f(1))处的切线方程为y=x-1,代入y=-x2+ax-2当a3时,=(1-a)当a=-1或a=3时,=(1-a)当-1aln2时,(x2-当x2a=2xx此时a=2ln2即x2a2ln2【点睛】本题考查了利用导数研究曲线上某点处的切线方程,考查了函数零点的求法,考查了利用导数求函数的最值,充分利用了数学转化思想方法,考查了学生灵活处理问题和解决问题的能力,是难度较大的题目21、 (1) ,.(2) 时,恰做一道及格概率最大;时,;时,恰做三道及格概率最大.【解析】分析:(1)根据题意得到,;(2)根据题意得到选择概率较大的即可,分且,且,且三种情况.详解:(1),;(2) 且,; 且,; 且,无解;综上,时,恰做一道及格概率最大;时,;时,恰做三道及格概率最大.点 睛:这 个 题 目 考 查 的 是 概 率 的 计 算 以 及 多 项 式 比 较 大 小 的 应 用, 分 类 讨 论 的 思 想.。22、();()或.【解析】()根据题中条件得知可求出直线的斜率,结合点在直线上,利用点斜式可写出直线的方程,于是可得出点、的坐标,进而求出椭圆的标准
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年美容师考试中的安全常识及答案
- 2024年六年级语文阅读策略应用题试题及答案
- 无痛内镜护理规范
- 2024年汽车维修工工作安排调整试题及答案
- 汽车美容师信息采集技巧试题及答案
- 重庆课件防复制费用
- 2024古代文学考试个案分析试题及答案
- 汽车美容师客户沟通技巧试题及答案
- 2024年汽车美容师职业技能标准试题及答案
- 二手车查询与信息收集技巧试题及答案
- 运动技能学习与控制课件第一章运动技能学习与控制概述
- 口袋妖怪白金详细图文攻略(整理全)
- GB/T 9575-2013橡胶和塑料软管软管规格和最大最小内径及切割长度公差
- GB/T 7588.1-2020电梯制造与安装安全规范第1部分:乘客电梯和载货电梯
- GB/T 6495.2-1996光伏器件第2部分:标准太阳电池的要求
- GA/T 950-2019防弹材料及产品V50试验方法
- 2023年全国高考英语试题和答案(辽宁卷)
- 中医骨伤科学课件
- 化工基础知识培训课件
- 【精品】六年级下册语文试题-阅读理解专项训练5含答案全国通用
- 保护继电器中文手册-re610系列rem610tobcnb
评论
0/150
提交评论