版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、目录摘要 1前言 21.设计原始资料 22.工艺比较及选择 22.1 污水特征 22.2 工艺比较 3 2.2.1 普通活性污泥工艺 3 2.2.2 氧化沟工艺 52.2.3 SBR工艺 42.2.4 AB法工艺 42.3 工艺选择 53.设计计算 6 3.1 污水处理程度的确定 6 3.2 污水处理工艺流程的选择 6 3.3 各处理单元设计计算 7 3.3.1 格栅 7 3.3.2 曝气沉砂池 8 3.3.3 AB工艺参数 9 3.3.4 A段曝气池 11 3.3.5 B段曝气池 14 3.3.6 A段中沉池 17 3.3.7 B段终沉池 17 3.3.8 污泥浓缩池 18 3.3.9 贮泥
2、池 19 3.3.10 污泥消化池 20 3.3.11 污泥脱水机 25 3.4 附属建筑物 27 3.5 处理厂规划 27 3.5.1 平面布置 27 3.5.2 高程布置 27 3.6 污水提升泵选择 294.结论 30参考文献 31致谢 32AB法污水处理工艺设计计算摘要:通过分析污水特征和工艺比较,污水处理厂采用AB法污水处理工艺。AB属超高负荷活性污泥法,其设计特点一般为不设初沉池,A段和B段的回流系统分开。A段和B段负荷在极为悬殊的情况下运行。A段污泥负荷高、污泥龄短、产泥量多,B段污泥负荷低、污泥龄长、产泥量较少。两段的沉淀池表面负荷差异也较大。AB法产泥量较大,需设污泥消化工艺
3、,解决污泥处理和出路问题。此外,AB法污水处理厂中的分期建设可缓解资金不足问题,同时使污水得到较大程度处理。本设计中选用的各参数数据参考现运行AB法污水厂的经验数据。关键词 : AB法,负荷,设计,参数The design and calculation of AB wastewater treatment technology Abstract:By means of analyzing the sewage characteristic and comparing treatment technologies, this wastewater treatment plant adopts
4、the AB process. AB process belongs to the ultrahigh load activated sludge process. The design feature of AB process is that the primary sedimentation tank is generally unnecessary, and the refluence systems of section A and section B are separated. The load of Section A and section B are extremely d
5、ifferent. Section A has high sludge load, short sludge age and more sludge production, while section B has low sludge load, long sludge age and less sludge production. Difference in the surface load of precipitating tanks in the two sections is noticeable. AB processs sludge yield rate is relatively
6、 high, so it is necessary to set up sludge digest tanks to deal with excess sludge problem. In addition, Phased construction in AB process wastewater treatment plant can alleviate the fund deficiency problem, and make it possible for the sewage to be treated by a high degree. All parameter and data
7、used in this design is selected from AB process wastewater treatment plants that having been operated successfully.Keyword: AB process, load, design, parameter前言在当今世界,城市的建设正在高速发展,随着城市规模的不断扩大和人口的增加,水环境污染成了一个重要问题。“环境保护”是我国的基本国策,是维持发展的必要组成部分。对次,各级政府给予了高度重视,加大了对城市污水处理厂工程的投资力度,引进了许多国内外先进的系统设计技术和设备;国内科技人员
8、也研究出了许多城市污水处理厂的新工艺、新技术,新建造了300多座城市污水处理厂工程,并正以每年几十座的速度增加,为我国城市污水处理事业迅速发展起到了推动作用。污水处理厂多以二级生物处理为主,其中城市污水处理厂大部分采用好氧生物处理方法,其中活性污泥法的应用较广,其作用机理是利用污水中所含的有机物作底物,通过污泥中的微生物对有机物的吸附降解达到处理污染的效果。活性污泥法经过几十年来的运用和改良,现在已取得较好的处理效果。从传统活性污泥法到现今的氧化沟工艺、AB法等都属于该范围内。AB法即吸附生物氧化处理法,它是德国亚琛大学B.Bhnke教授于70年代中期开创,80年代初开始应用的工程实践。AB工
9、艺是根据微生物生长繁殖及其基质代谢的关系而确定的,并充分考虑了污水收集、输送系统中高活性微生物的作用,通常维持A段在极高负荷下,使微生物处于快速增长期以发挥其对有机物的快速吸附作用;维持B段在极高负荷下运行,利用长世代期微生物的作用,保证出水水质。AB法与传统生物处理方法比较,在处理效率、运行稳定性、工程的投资和运行费用等方面均有明显优势。1 、设计原始资料某城镇生活污水资料:平均水量Q=1104 m3/d,时变化系数为1.3。水质如下:pH=6.58.5,COD=450 mg/L,BOD5=220 mg/L,SS=280 mg/L,NNH3=50 mg/L,TN=60 mg/L。2、工艺比较
10、及选择2.1 污水特征本项目污水处理的特点:污水以有机污染为主,BOD5/COD=0.49,可生化性较好。污水中主要污染物指标BOD5、COD和SS相对国内一般城市污水较高,同时有脱氮要求。污水处理厂投产时,多数重点污染源治理工程已投入运行。针对以上特点以及出水要求,现有城市污水处理技术的特点,以采用生化处理最为经济。2.2 工艺比较根据国内外已运行污水处理厂的调查,要达到确定的治理目标,可采用的方法有:“普通活性污泥法”、“氧化沟法”、“SBR活性污泥法”和“AB法”。2.2.1 普通活性污泥法工艺普通活性污泥法,应用年限长,具有成熟的设计及运行经验,处理效果可靠。自20世纪70年代以来,随
11、着污水处理技术的发展,本方法在工艺及设备等方面又有了很大改进。在工艺方面,通过增加工艺构筑物可以成为“A/O”或“A2/O”工艺,从而实现脱N和P。在设备方面,开发了各种微孔曝气器,使氧转移效率提高到20%以上,从而节省了运行费。国内外以运行的中大型污水处理厂,如西安邓家村(12m3/d)、天津纪庄子(26万m3/d)、北京高碑店(50万m3/d)、成都三瓦窑(20万m3/d)等污水处理厂都采用此方法。目前世界最大的污水处理厂美国芝加哥市西南西污水处理厂也采用此工艺,该厂于1964年建成,设计流量为455万m3/d。普通活性污泥法如设计合理、运行管理得当,出水BOD5可达到1020mg/L。它
12、的缺点是工艺路线长,工艺构筑物及设备多而复杂,运行管理困难,基建投资及运行费均较高。国内已建的此类污水处理厂,基建投资一般为10001300元/m3,运行费为0.20.4元/(m3/d)或更高。2.2.2 氧化沟工艺氧化沟污水处理技术,是20世纪50年代由荷兰人首创。60年以来,这项技术在欧洲、北美、南非、澳大利亚等国家以被广泛采用,工艺及构筑有了很大的发展和进步。据报道,19631974年英国共兴建了300多座氧化沟,美国已有500多座,丹麦已建成300多座。目前世界最大的氧化沟污水厂是德国路维希港的BASF污水处理厂,设计最大流量为76.9万m3/d,1974年建成。由于该工艺在水流流态和
13、曝气装置上的特殊性,其处理流程简单、构筑物少,一般情况下可不建初沉池和污泥消化系统,某些情况下还可不建二沉池和污泥回流系统,对于中小型污水处理厂,为节省投资或降低维护管理难度时,会得到首选。其处理效果好且运行稳定可靠,不仅可满足BOD5和SS的排放标准,在运行方式合适时还能实现脱氮和除磷的效果,而不像传统活性污泥法(要脱氮除磷时)要做大量改造工作。同时该工艺还具有较强冲击负荷承受能力、剩余污泥少污泥稳定程度好、机械设备少等优点。当有脱氮的处理要求时,氧化沟工艺在基建投资方面比传统活性污泥法节省很多;但是当仅要求去除BOD5而在脱氮方面不作要求时,对于污水厂采用氧化沟工艺运行费用比传统活性污泥法
14、略低或相当,不占优势。但是该工艺因存在污泥中的有机物质最终是在氧化沟中部分好氧代谢去除的,所以氧化沟工艺在节约能耗、降低运行费用方面不具有优势。2.2.3 SBR活性污泥法工艺SBR全称为间歇式活性污泥法,间歇式活性污泥法作为一项新技术,不论在工业企业还是城市污水处理工程中得到了更广泛的应用。目前国内一些运行此工艺的城市有云南昆明市第三污水处理厂,处理流量为15万m3/d;浙江金华市污水处理厂,处理流量为8万m3/d;贵州遵义市污水处理厂,处理流量为8万m3/d。这主要是该工艺具有特殊的运行和净化机制,比传统活性污泥法具有更高的污染物净化效果,尤其对高浓度难生物降解污水,SBR工艺可省去二沉池
15、、污泥回流设施,某些情况下还可省去调节池和初沉池,因而使整个工程占地减少、投资降低。另外,该工艺还具有较强的冲击负荷调节能力,污泥不易膨胀、易于沉淀、脱水性能好,可实现脱氮除磷功能等优点。 但该工艺要求配备专用排水装置和自动控制系统,在目前环保资金还比较紧张的条件下,限制了SBR工艺的高效稳定运行。由于是间歇运行,该工艺空气扩散器堵塞的可能性大于传统活性污泥法,若采用大气泡空气扩散器(为降低投资),则其节能效果不如传统活性污泥法。2.2.4 AB法工艺AB法即吸附生物氧化处理法,德国亚琛大学B.Bhnke教授于70年代中期开创,80年代初开始应用于工程实践。该工艺对进水负荷变化适应性强、运行稳
16、定、污泥不易膨胀、较好的脱氮除磷效果等优点。由于其具有抗冲击负荷能力强、对pH值变化和有毒物质具有明显缓冲作用的特点,故主要应用于污水浓度高、水质水量变化较大,特别是工业污水所占比例较高的城市污水处理厂。目前全世界已有60多座AB法污水处理厂在运行和设计、规划之中。德国有34座污水处理厂采用AB法工艺。国内一些运行此工艺的城市有山东青岛市海泊河污水处理厂,工程规模为8万m3/d;山东淄博市污水处理厂,工程规模为14万m3/d;广东深圳市罗芳污水处理厂,工程规模为10万m3/d;广东广州猎德污水处理厂工程规模为22万m3/d。实践证明AB工艺可以比传统活性污泥法节省工程投资15%25%,节省占地
17、10%15%,降低运转费15%25%,已成为近10年来发展最快的城市污水处理工艺。根据系统工程的理论,AB法工艺省去了初沉池;从生物反应动力学的角度出发,采用了经济合理的二段处理工艺流程;根据微生物的生长、繁殖规律及其对有机质的代谢关系,使二段的污泥回流系统分开而保证处理过程中生物相的稳定性。这些使得AB法工艺比传统活性污泥法具有更高和更稳定的处理效果,大大的节省了基建和运转费用。在AB法污水处理厂的分期建设中,可以先建AB工艺的A段,既能缓解建设资金的不足,又能使大量的污水得到较大程度的处理。待资金充足时,再建B段,这样既容易实施,也可带来巨大的环境经济效应,比较符合我国的国情。另外,我国已
18、建的2级污水处理厂普遍存在着超负荷的问题。如果把它们改造成用AB法,则可较大幅度的提高其处理能力。其做法是将原污水厂的沉砂池改为A段曝气池,将原初沉池改为中沉池,再另建一套污泥回流系统即可。该办法经国外有关污水处理厂实践证明是行之有效的,而且具有投资小、经济效益高的优点。AB法需增加一些构筑物和设施如曝气池、回流设施等,在这方面的工程投资要增加。此外,AB法污泥产量较高,如用于污泥消化可产更高的沼气量,否则给污泥处理和出路增加了难度。 2.3工艺选择通过以上对设计任务书中原始数据进行的工艺分析和对四种处理工艺的比较,决定采用AB法工艺处理。分析如下:工艺选择应该结合技术指标和经济指标两方面综合
19、评估选出最优方案。在上述各处理过程工艺中从处理效率、运行能耗和管理等方面比较,普通活性污泥法比其它三种新工艺明显不具优势。本设计任务中有机物浓度较大,对于氧化沟在运行时的能耗、运行费用较高,不选用此工艺。而SBR工艺对于排水装置和自动控制系统要求较高,设备投资和运行费用较高,考虑到城镇污水厂经济负担问题,不选此工艺方法。因此,结合实际情况和技术经济等因素,本次设计决定采用AB法工艺处理。AB工艺除了能保证污水处理要求的同时也能缓解污水厂可能出现的资金不足问题。此外,污泥消化过程产生的沼气也能带来一部分经济效益。3、 设计计算3.1 污水处理程度的确定本设计采用AB法处理上述废水,处理出水水质要
20、求达到污水综合排放标准一级标准(GB89781996)。查污水综合排放标准一级标准中排放水质指标规定值为pH=69,COD=60 mg/L,BOD5=20 mg/L,SS=20 mg/L,NNH3=50 mg/L,TN=60 mg/L。该城镇生活污水每天平均流量为Q=1104 m3/d=115.74 L/sQ设=KZQ=1.3104 m3/d=150.46 L/s污水中SS的处理程度根据一级标准可求出SS的处理程度为ESS=(28020)/280=92.86%污水中BOD5的处理程度根据一级标准,BOD的处理程度为EBOD=(22020)/220=90.91%3.2 污水处理工艺流程的选择该污
21、水处理工程主要以去除有机污染为主,去除目标为SS和BOD5 及部分含氮污染物。本设计采用AB法处理,在两段曝气池降解有机物的同时,B段曝气池也能发挥出去除含氮污染物的作用。AB法污水及污泥的处理工艺流程如图1所示:生活 格 提升 曝 气 A 段 中 B 段 终 出污水 栅 泵站 沉砂池 曝气池 沉池 曝气池 沉池 水井 A 段 B 段污泥泵房 污泥泵房 沼气利用 污泥 污泥 污 泥 贮 污 泥外运 脱水机 消化池 泥池 浓缩池图1 AB法污水及污泥处理工艺流程3.3 各处理单元设计计算3.3.1 格栅格栅设在处理构筑物之前,用于拦截水中较大悬浮物和漂浮物,保证后续设施的正常运行。本设计中,污水
22、通过格栅去除部分悬浮物和漂浮物后经提升泵房提升直接进入曝气沉砂池。 栅槽宽度设明渠数N1=1,明渠有效水深h1=0.5 m,水流速度v1=0.6 m/s,则明渠宽度B1为B1=Q设/(N1v1h1)=0.15046/(10.60.5)=0.5 m取栅前水深h=0.5 m,过栅流速v=0.8 m/s,栅条间隙宽度b=0.015 m,格栅倾角a=90,格栅数N=1,则栅条间隙数n为n=Q设(Sin a)1/2/Nbhvn=0.150461/(10.0150.50.8)=26 个设栅条宽度S=0.01 m,则栅槽宽度B为B=S(n1)+bn=0.01(261)+0.01526=0.64 m 水流通过
23、格栅的水头损失水头损失为 h=k(S/b)4/3 Sin a v2/2g 其中:k格栅受污堵塞后水头损失增大倍数,取 k=3; 形状系数,本设计中,栅条采用迎水面为半圆的矩形断面,=1.83; S栅条宽度,S=0.01 m; b栅条间隙宽度,b=0.015 m; a格栅倾角,a=90; v过栅流速,v=0.8 m/s;则 h=31.83(0.01/0.015)4/310.82/(29.8)=0.1 m 栅槽总高度栅槽总高度H=h+h2+h h栅前水深,h=0.5 m;h2栅前渠道超高,取h2=0.3 m;则栅槽总高度 H=0.5+0.3+0.1=0.9 m 栅槽总长度栅槽总长度L=l1+l2+
24、1.0+0.5+H1/tg a其中:l1进水渠道渐宽部分长度,l1=(BB1)/2tg a1; l2栅槽与出水渠道渐缩部分长度,l2=l1/2; H1栅前槽高,H1=h+h2=0.5+0.3=0.8 m; a1进水渠展开角,取a1=20;将各参数代入上式,则L=(0.640.5)/2tg20+(0.640.5)/4tg20+1.5=1.8 m 每日栅渣量每日栅渣量W=QW1/103 W1栅渣量,本设计取为0.1 m3栅渣/103 m3 污水;则 W=11040.1/103=1 m3/d,采用机械除污设备。3.3.2 曝气沉砂池本设计中选用曝气沉砂池,它主要是使颗粒碰撞摩擦,将无机颗粒与有机物分
25、开,排除的沉砂有机物含量较低,方便后续工艺处理。 总有效容积设污水在沉砂池中的水力停留时间t为2 min;则沉砂池的总有效容积V为V=60Q设t=600.150462=18 m3 水流截面积设污水在池中的水平速度v 为0.08 m/s,则水流截面积A为A=Q设/v=0.15046/0.08=1.9 m2,取为2.25 m 池总宽度设有效水深h=1.5 m,则沉砂池总宽度B 为B=A/h=2.25/1.5=1.5 m 设沉砂池共1座,则每座沉砂池的池宽b 为b=B=1.5,宽深比 b :h=1 :1,符合要求。 沉砂池池长沉砂池的池长L为L=V/A=18/2.25=8 m 沉砂池总高设超高为0.
26、3 m,则总高H=1.5+0.3=1.8 m 曝气量曝气沉砂池所需曝气量q=3600DQ设 D1 m3 污水所需曝气量,取0.2 m3/m3;则 q=36000.150460.2=108.4 m3/h曝气沉砂池底部的沉砂通过吸砂泵送至砂水分离器,脱水后的清洁砂粒外运,分离出来的水回流至提升泵房吸水井。曝气沉砂池的出水通过管道直接送往A段曝气池,输水管道的管径为500 mm,管内最大流速为0.76 m/s。3.3.3 AB工艺参数 设计参数的确定A段污泥负荷:NSA=4.5 kg BOD5/(kgMLSSd);混合液污泥浓度:XA=2000 mg/L;污泥回流比 RA=0.6。B段污泥负荷:NS
27、B=0.125 kg BOD5/(kgMLSSd);混合液污泥浓度:XB=3450 mg/L;污泥回流比 RA=1.0。 计算处理效率BOD5总去除率 EBOD =(22020)/220=90.91%A段BOD5去除率EA取60%,则A段出水BOD5浓度LtA为LtA=220(160%)=88 mg/L已知B段出水BOD5浓度LtB=20 mg/L,B段BOD5去除率EB为 EB=(LtALtB)/LtA=(8820)/88=77.27% 曝气池容积计算进水BOD5浓度La=220 mg/L,A段BOD5去除量 LrA为LrA=LaLtA=22088=132 mg/L=0.132 kg/m3A
28、段混合液挥发性污泥浓度XVA为XVA=fXA=0.752=1.5 kg/m3则A段曝气池容积VA=24Q设LrA/(NSA XVA)为VA=241.31040.132/(244.51.5)=255 m3B段BOD5去除量 LrB为LrB=(LtALtB)=8820=68 mg/L=0.068 kg/m3B段混合液挥发性污泥浓度XVB为XVB=fXB=0.753.45=2.59 kg/m3则B段曝气池容积VB=24Q设LrB/(NSBXVB)为VB=241.31040.068/(240.1252.59)=2731 m3 水力停留时间计算水力停留时间T=V/Q 则A段水力停留时间TA=VA/Q设=
29、25524/(1.3104 )=0.47 h B段水力停留时间TB=VB/Q设=273124/(1.3104 )=5.47 h 最大需氧量 A段最大需氧量 OA=a/Q设LrA 其中:a/需氧量系数,0.40.6 kg O2/kg BOD5 则 OA=0.61.31040.132/24=42.9 kg O2/hB段最大需氧量 OB=a/Q设LrB +b/Q设Nr其中:a/需氧量系数,1.23 kg O2/kg BOD5 b/NH3N 硝化需氧量系数,4.57 kg O2/kg NH3NOB=1.231.31040.068/24+4.571.3104(5015)103/24=132 kg O2/
30、h二段总需氧量O2=OA+OB=42.9+132=174.9 kg O2/h 剩余污泥量A段剩余污泥量设A段SS去除率为75%,SS去除量Sr=28075%=210 mg/L=0.21 kg/m3,干污泥量为 WA=QSr+aQLrA其中: a污泥增殖系数,0.30.5 kg/kg BOD5,取0.4 kg/kg BOD5 Q污水平均流量,1.0104 m3/dWA=1.01040.21+0.41040.132=2628 kg/d湿污泥量(设污泥含水率PA为98.5%)为 QSA=WA/(1PA)1000QSA=2628/(198.5%)1000=175.2 m3/dB段剩余污泥量干污泥量为
31、WB=aQLrB 其中:a污泥增殖系数,0.50.65 kg/kg BOD5,取0.6 kg/kg BOD5 Q污水平均流量,1.0104 m3/dWB=0.61040.068=408 kg/d湿污泥量(设污泥含水率PB为99.5%)QSB=WB/(1PB)1000QSB=408/(199.5%)1000=81.6 m3/d总泥量 QS=QSA+QSB=175.2+81.6=256.8 m3/d 污泥龄计算CA段污泥龄 CA=1/(aANSA)其中:aAA段污泥增殖系数,取0.4 kg/kg BOD5NSAA段污泥负荷kg BOD5/(kgMLSSd),取4.5 kg BOD5/(kgMLSS
32、d)则CA=1/(0.44.5)=0.56 dB段污泥龄 CB=1/(aBNSB)其中:aBB段污泥增殖系数,取0.6 kg/kg BOD5NSBB段污泥负荷kg BOD5/(kgMLSSd),取0.125 kg BOD5/(kgMLSSd)则CB=1/(0.60.125)=13.33 d 回流污泥浓度浓度 Xr=X(1+R)/R其中:X混合液污泥浓度 R污泥回流比A段回流污泥浓度 XrA=2000(1+0.6)/0.6=5333 mg/LB段回流污泥浓度 XrB=3450(1+1.0)/1.0=6900 mg/L3.3.4 A段曝气池 曝气池的计算和各部位尺寸的确定1)确定曝气池容积A段曝气
33、池共设2个,每个曝气池容积为255/2=128 m3。2)确定曝气池各部位尺寸设池深h为2 m,则每组曝气池的面积F为F=128/2=64 m2,池宽B取3 m,宽深比B/h=3/2=1.5介于12 之间,符合规定。池长L=F/B=64/3=21.3 m,长宽比 L/B=21.3/2=10.6510 ,符合规定。每个曝气池设计为单廊道曝气池,廊道长取22 m。曝气池超高取0.5 m,则曝气池池高为 H=2+0.5=2.5 m 段曝气池曝气系统设计与计算1)最大需氧量为OA=42.9 kg/h2)平均时需氧量为O2=a/QLrA=0.61040.132=33.0 kg/h 3)每日去除的BOD5
34、值为BODrA=11040.132/24=55 kg/h A段供气量计算采用网状模型微孔空气扩散器,铺设距池底0.2 m 处,淹没水深1.8 m,计算温度30。查表得 20和30时水中饱和溶解氧值分别为CS(20)=9.17 mg/L,CS(30)=7.63 mg/L1)空气扩散出口处的绝对压力Pb=1.013105+9800 H为 Pb=1.013105+98001.8=1.19105 Pa空气离开曝气池池面时,氧的百分比为 O t=21(1EA)100/79+21(1EA)其中:EA空气扩散器的氧转移率,此处取值12%,则O t=21(10.12)100/79+21(10.12)=18.9
35、6%2)曝气池混合液中平均氧饱和浓度(按最不利的温度条件考虑)为CSb(T)=CS(T)Pb/(2.20610 5)+O t/42 最不利的温度条件按30计算,则CSb(30)=7.63(1.1910 5)/(2.20610 5)+18.96/42 =7.56 mg/L换算为在20条件下,脱氧清水的充氧量 R0=RCS(20)/CSb(T)c 1.024T20其中:R0单位时间由于曝气向清水传递的氧量R单位时间向混合液传递的氧量,相当于平均需氧量因混合液含污泥颗粒而降低传递系数的修正值( 1),取=0.82废水饱和溶解氧的修正值( 1),取=0.95气压修正系数,=当地实际大气压/1.0132
36、5105,取=1.0c废水实际溶解氧的浓度,取c=2.0 mg/LT混合液设计温度,T=30R0=33.09.17/0.820.951.07.562.01.0243020=56.2 mg/h相应的最大时需氧量为R0max=42.99.17/0.820.951.07.562.01.0243020=73.0 mg/h3)曝气池的平均时供氧量GS=R0100/(0.3EA)则GS=56.2100/(0.312)=1561 m3/h曝气池最大供气量GSmax= R0max100/(0.3EA)则GSmax=73.0100/(0.312)=2028 m3/h去除1kg BOD5的供气量(m3 空气/kg
37、 BOD)为空气=1561/55=28.4 m3 空气/kg BOD1 m3 污水的供气量(m3 空气/m3 污水)为空气=156124/104=3.75 m3 空气/m3 污水4)A段曝气池曝气系统的空气总用量除采用鼓风曝气外,系统还采用空气在回流污泥井中提升污泥,空气量按回流污泥量的8倍考虑,污泥回流比R值为60%,则提升回流污泥所需空气量为80.6104/24=2000 m3/h5)空气管路计算在两个曝气池相邻的隔墙上铺设1根空气干管。在干管上设5对曝气管,共10条配气竖管。则两个曝气池中共有10条配气竖管,每根竖管的供气量为2028/10=202.8 m3/h曝气池平面面积为2322=
38、132 m2每个空气扩散器的服务面积按0.49 m2 计算,则所需空气扩散器的总数为132/0.49=270 个每个竖管上安装的空气扩散器的数目为270/10=27 个 每个空气扩散器的配气量为2028/(1027)=7.51 m3/h6)空压机的选定一般希望管道及扩散设备的总压力损失不大于15 kPa,其中管道损失控制在5 kPa内,其余为扩散设备的压力损失。风压损失P(Pa)可按下式估算:P=H/9.8+15 其中:H/空气扩散器淹没水深,m空气扩散装置安装在距离曝气池底0.2 m 处,因此,空压机所需压力为P=(20.2)9.8+15=32.64 kPa供压机供气量最大量估计值(m3/m
39、in)为2028+2000=4028 m3/h=67.13 m3/min平均时供气量估计量为1561+2000=3561 m3/h=59.35 m3/min根据所需压力和空气量,采用LG60型空压机3台,该型空压机风压50 kPa,风量60 m3/min。正常条件下,1台工作,2台备用;高负荷时,2台工作,1台备用。曝气池的出水通过管道送往中沉池集配水井,输水管道内的流量按最大时流量加上回流的污泥量进行设计,回流比为60%,则输水管的管径为600 mm,管内最大流速为0.85 m/s。集配水井为内外套筒结构,由A段曝气池过来的输水管道直接进入内层套筒,进行流量分配,通过两根450 mm 的管道
40、送往2个中沉池,管道内最大水流速度为0.75m/s。3.3.5 B段曝气池 曝气池的计算和各部位尺寸的确定1)确定曝气池容积B段曝气池共设2组,每组容积为2731/2=1366 m3。2)确定曝气池各部位尺寸设池深h为3.5 m,则每组曝气池的面积F为F=1366/3.5=390.28 m2池宽B取4 m,宽深比B/h=4/3.5=1.14介于12 之间,符合规定。池长L=F/B=390.28/4=97.57 m,长宽比 L/B=97.57/4=24.410 ,符合规定。每组曝气池设计为3廊道曝气池,每个廊道长L1为L1=97.57/3=32.5 m,取为33 m。曝气池超高取0.5 m,则曝
41、气池总池高为H=3.5+0.5=4.0 m B段曝气池曝气系统设计与计算1)最大需氧量为OB=132 kg/h2)平均时需氧量为O2=a/QLrB +b/QNr 为O2=1.231040.068/24+4.57104(5015)103/24=102 kg O2/h3)每日去除的BOD5值为BODrB=11040.068/24=28.33 kg/h B段供气量计算采用网状模型微孔空气扩散器,铺设距池底0.2 m 处,淹没水深3.3 m,计算温度30。查表得 20和30时水中饱和溶解氧值分别为CS(20)=9.17 mg/L,CS(30)=7.63 mg/L1)空气扩散出口处的绝对压力Pb=1.0
42、13105+9800 H为Pb=1.013105+98003.3=1.34105 Pa空气离开曝气池池面时,氧的百分比为 O t=21(1EA)100/79+21(1EA)其中:EA空气扩散器的氧转移率,此处取值12%,则O t=21(10.12)100/79+21(10.12)=18.96%2)曝气池混合液中平均氧饱和浓度(按最不利的温度条件考虑)为CSb(T)=CS(T)Pb/(2.20610 5)+O t/42 最不利的温度条件按30计算,则CSb(30)=7.63(1.3410 5)/(2.20610 5)+18.96/42 =8.08 mg/L换算为在20条件下,脱氧清水的充氧量 R
43、0=RCS(20)/CSb(T)c 1.024T20其中:R0单位时间由于曝气向清水传递的氧量 R单位时间向混合液传递的氧量,相当于平均需氧量 因混合液含污泥颗粒而降低传递系数的修正值( 1),取=0.82废水饱和溶解氧的修正值(95%0.05gcm330mL30min101.53.0mm30min1020mgcm298%0.02gcm320mL30min891.01.5mm30min2050mgcm24%泥浆密度秤500700mL漏斗法100mL量杯法500mL量筒或稳定计失水量仪pH试纸失水量仪静切力计含砂量测定器注:1.密度:表中上限为新制泥浆,下限为循环泥浆。一般采用膨润土泥浆时,新浆
44、密度控制在1.041.05;循环程中的泥浆控制在1.251.30;对于松散易坍地层,密度可适当加大。浇灌混凝土前槽内泥浆控制在1.151.25,视土质情况而定;2.成槽时,泥浆主要起护壁作用,在一般情况下可只考虑密度、粘度、胶体率三项指标;3.当存在易塌方土层(如砂层或地下水位下的粉砂层等)或采用产生冲击、冲刷的掘削机械时,应适当考虑,泥浆粘度,宜用2530s。3.3.2在施工过程中应加强检查和控制泥浆的性能,定时对泥浆性能进行测试,随时调泥浆配合比,做好泥浆质量检测记录。一般作法是:在新浆拌制后静止24h,测一次全项(含砂量除外);在成槽过程中,一般每进尺15m或每4h测定一次泥浆密度和粘度
45、。在槽结束前测一次密度、粘度;浇灌混凝土前测一次密度。两次取样位置均应在槽底以上200mm处。失水量和pH值,应在每槽孔的中部和底部各测一次。含砂量可根据实际情况测定。稳定性和胶体率一般在循环泥浆中不测定。3.3.3泥浆必须经过充分搅拌,常用方法有:低速卧式搅拌机搅拌;螺旋桨式搅拌机搅拌;压缩空气搅拌;离心泵重复循环。泥浆搅拌后应在储浆池内静置24h以上,或加分散剂膨润土或粘土充分水化后方可使用。3.3.4通过沟槽循环或混凝土换置排出的泥浆,如重复使用,必须进行净化再生处理。一般采用重力沉降处理,它是利用泥浆和土渣的密度差,使土渣沉淀,沉淀后的泥浆进入贮浆池,贮浆池的容积一般为一个单元槽段挖掘
46、量及泥浆槽总体积的2倍以上。沉淀池和贮浆池设在地上或地下均可,但要视现场条件和工艺要求合理配置。如采用原土造浆循环时,应将高压水通过导管从钻头孔射出,不得将水直接注入槽孔中。3.3.5在容易产生泥浆渗漏的土层施工时,应适当提高泥浆粘度和增加储备量,并备堵漏材料。如发生泥浆渗漏,应及时补浆和堵漏,使槽内泥浆保持正常。3.4槽段开挖3.4.1挖槽施工前应预先将连续墙划分为若干个单元槽段,其长度一般为47m。每个单元槽段由若干个开挖段组成。在导墙顶面划好槽段的控制标记,如有封闭槽段时,必须采用两段式成槽,以免导致最后一个槽段无法钻进。3.4.2成槽前对钻机进行一次全面检查,各部件必须连接可靠,特别是
47、钻头连接螺栓不得有松脱现象。3.4.3为保证机械运行和工作平稳,轨道铺设应牢固可靠,道碴应铺填密实。轨道宽度允许误差为5mm,轨道标高允许误差10mm。连续墙钻机就位后应使机架平稳,并使悬挂中心点和槽段中心一致。钻机调好后,应用夹轨器固定牢靠。3.4.4挖槽过程中,应保持槽内始终充满泥浆,以保持槽壁稳定。成槽时,依排渣和泥浆循环方式分为正循环和反循环。当采用砂泵排渣时,依砂泵是否潜入泥浆中,又分为泵举式和泵吸式。一般采用泵举式反循环方式排渣,操作简便,排泥效率高,但开始钻进须先用正循环方式,待潜水砂泵电机潜入泥浆中后,再改用反循环排泥。3.4.5当遇到坚硬地层或遇到局部岩层无法钻进时,可辅以采
48、用冲击钻将其破碎,用空气吸泥机或砂泵将土渣吸出地面。3.4.6成槽时要随时掌握槽孔的垂直精度,应利用钻机的测斜装置经常观测偏斜情况,不断调整钻机操作,并利用纠偏装置来调整下钻偏斜。3.4.7挖槽时应加强观测,如槽壁发生较严重的局部坍落时,应及时回填并妥善处理。槽段开挖结束后,应检查槽位、槽深、槽宽及槽壁垂直度等项目,合格后方可进行清槽换浆。在挖槽过程中应作好施工记录。3.5清槽3.5.1当挖槽达到设计深度后,应停止钻进,仅使钻头空转而不进尺,将槽底残留的土打成小颗粒,然后开启砂泵,利用反循环抽浆,持续吸渣1015min,将槽底钻渣清除干净。也可用空气吸泥机进行清槽。3.5.2当采用正循环清槽时
49、,将钻头提高槽底100200mm,空转并保持泥浆正常循环,以中速压入泥浆,把槽孔内的浮渣置换出来。3.5.3对采用原土造浆的槽孔,成槽后可使钻头空转不进尺,同时射水,待排出泥浆密度降到1.1左右,即认为清槽合格。但当清槽后至浇灌混凝土间隔时间较长时,为防止泥浆沉淀和保证槽壁稳定,应用符合要求的新泥浆将槽孔的泥浆全部置换出来。3.5.4清理槽底和置换泥浆结束1h后,槽底沉渣厚度不得大于200mm;浇混凝土前槽底沉渣厚度不得大于300mm,槽内泥浆密度为1.11.25、粘度为1822s、含砂量应小于8%。3.6钢筋笼制作及安放3.6.1钢筋笼的加工制作,要求主筋净保护层为7080mm。为防止在插入
50、钢筋笼时擦伤槽面,并确保钢筋保护层厚度,宜在钢筋笼上设置定位钢筋环、混凝土垫块。纵向钢筋底端距槽底的距离应有100200mm,当采用接头管时,水平钢筋的端部至接头管或混凝土及接头面应留有100150mm间隙。纵向钢筋应布置在水平钢筋的内侧。为便于插入槽内,利钢筋底端宜稍向内弯折。钢筋笼的内空尺寸,应比导管连接处的外径大100mm以上。3.6.2为了保证钢筋笼的几何尺寸和相对位置准确,钢筋笼宜在制作平台上成型。钢筋笼每棱边(横向及竖向)钢筋的交点处应全部点焊,其余交点处采用交错点焊。对成型时临时扎结的铁丝,宜将线头弯向钢筋笼内侧。为保证钢筋笼在安装过程中具有足够的刚度,除结构受力要求外,尚应考虑
51、增设斜拉补强钢筋,将纵向钢筋形成骨架并加适当附加钢筋。斜拉筋与附加钢筋必须与设计主筋焊牢固。钢筋笼的接头当采用搭接时,为使接头能够承受吊入时的下段钢筋自重,部分接头应焊牢固。3.6.3钢筋笼制作允许偏差值为:主筋间距l0mm;箍筋间距20mm;钢筋笼厚度和宽目l0mm;钢筋笼总长度50mm。3.6.4钢筋笼吊放应使用起吊架,采用双索或四索起吊,以防起吊时因钢索的收紧力而目起钢筋笼变形。同时要注意在起吊时不得拖拉钢筋笼,以免造成弯曲变形。为避免钢筋吊起后在空中摆动,应在钢筋笼下端系上溜绳,用人力加以控制。3.6.5钢筋笼需要分段吊入接长时,应注意不得使钢筋笼产生变形。下段钢筋笼入槽后.临时穿钢管
52、搁置在导墙上,再焊接接长上段钢筋笼。钢筋笼吊入槽内时,吊点中心必须对准槽段中心,竖直缓慢放至设计标高,再用吊筋穿管搁置在导墙上。如果钢筋笼不能顺利地摄入槽内,应重新吊出,查明原因,采取相应措施加以解决,不得强行插入。3.6.6所有用于内部结构连续的预埋件、预埋钢筋等,应与钢筋笼焊牢固。3.7浇注水下混凝土。3.7.1混凝土配合比应符合下列要求:混凝土的实际配制强度等级应比设计强度等级高一级;水泥用量不宜少于370kgm3;水灰比不应大于0.6;坍落度宜为1820cm,并应有一定的流动度保持率;坍落度降低至15cm的时间,一般不宜小于lh;扩散度宜为3438cm;凝土拌合物的含砂率不小于45%;
53、混凝土的初凝时间,应能满足混凝土浇灌和接头施工工艺要求,一般不宜低于34h。3.7.2接头管和钢筋就位后,应检查沉渣厚度并在4h以内浇灌混凝土。浇灌混凝土必使用导管,其内径一般选用250mm,每节长度一般为2.02.5m。导管要求连接牢靠,接头用橡胶圈密封,防止漏水。导管接头若用法兰连接,应设锥形法兰罩,以防拔管时挂住钢筋。导管在使用前要注意认真检查和清理,使用后要立即将粘附在导管上的混凝土清除干净。3.7.3在单元槽段较长时,应使用多根导管浇灌,导管内径与导管间距的关系一般是:导管内径为150mm,200mm,250mm时,其间距分别为2m、3m、34m,且距槽段端部均不得超过1.5m。为防
54、止泥浆卷入导管内,导管在混凝土内必须保持适宜的埋置深度,一般应控制在24m为宜。在任何情况下,不得小于1.5m或大于6m。,3.7.4导管下口与槽底的间距,以能放出隔水栓和混凝土为度,一般比栓长100200mm。隔水栓应放在泥浆液面上。为防止粗骨料卡住隔水栓,在浇注混凝土前宜先灌入适量的水泥砂浆。隔水栓用铁丝吊住,待导管上口贮斗内混凝土的存量满足首次浇筑,导管底端能埋入混凝土中0.81.2m时,才能剪断铁丝,继续浇筑。3.7.5混凝土浇灌应连续进行,槽内混凝土面上升速度一般不宜小于2mh,中途不得间歇。当混凝土不能畅通时,应将导管上下提动,慢提快放,但不宜超过300mm。导管不能作横向移动。提
55、升导管应避免碰挂钢筋笼。3.7.6随着混凝土的上升,要适时提升和拆卸导管,导管底端埋入混凝土面以下一般保持24m。不宜大于6m,并不小于1m,严禁把导管底端提出混凝土上面。3.7.7在一个槽段内同时使用两根导管灌注混凝土时,其间距不应大于3.0m,导管距槽段端头不宜大于1.5m,混凝土应均匀上升,各导管处的混凝土表面的高差不宜大于0.3m,混凝土浇筑完毕,终浇混凝土面高程应高于设计要求0.30.5m,此部分浮浆层以后凿去。3.7.8在浇灌过程中应随时掌握混凝土浇灌量,应有专人每30min测量一次导管埋深和管外混凝土标高。测定应取三个以上测点,用平均值确定混凝土上升状况,以决定导管的提拔长度。3
56、.8接头施工3.8.1连续墙各单元槽段间的接头型式,一般常用的为半圆形接头型式。方法是在未开挖一侧的槽段端部先放置接头管,后放入钢筋笼,浇灌混凝土,根据混凝土的凝结硬化速度,徐徐将接头管拔出,最后在浇灌段的端面形成半圆形的接合面,在浇筑下段混凝土前,应用特制的钢丝刷子沿接头处上下往复移动数次,刷去接头处的残留泥浆,以利新旧混凝土的结合。3.8.2接头管一般用10mm厚钢板卷成。槽孔较深时,做成分节拼装式组合管,各单节长度为6m、4m、2m不等,便于根据槽深接成合适的长度。外径比槽孔宽度小1020mm,直径误差在3mm以内。接头管表面要求平整光滑,连接紧密可靠,一般采用承插式销接。各单节组装好后
57、,要求上下垂直。3.8.3接头管一般用起重机组装、吊放。吊放时要紧贴单元槽段的端部和对准槽段中心,保持接头管垂直并缓慢地插入槽内。下端放至槽底,上端固定在导墙或顶升架上。3.8.4提拔接头管宜使用顶升架(或较大吨位吊车),顶升架上安装有大行程(12m)、起重量较大(50100t)的液压千斤顶两台,配有专用高压油泵。3.8.5提拔接头管必须掌握好混凝土的浇灌时间、浇灌高度、混凝土的凝固硬化速度,不失时机地提动和拔出,不能过早、过快和过迟、过缓。如过早、过快,则会造成混凝土壁塌落;过迟、过缓,则由于混凝土强度增长,摩阻力增大,造成提拔不动和埋管事故。一般宜在混凝土开始浇灌后23h即开始提动接头管,
58、然后使管子回落。以后每隔1520min提动一次,每次提起100200mm,使管子在自重下回落,说明混凝土尚处于塑性状态。如管子不回落,管内又没有涌浆等异常现象,宜每隔2030mm拔出0.51.0m,如此重复。在混凝土浇灌结束后58h内将接头管全部拔出。4、质量标准4.1地下连续墙均应设置导墙,导墙形式有预制及现浇两种,现浇导墙形状有“L”型或倒“L”型,可根据不同土质选用。4.2地下墙施工前宜先试成槽,以检验泥浆的配比、成槽机的选型并可复核地质资料。4.3作为永久结构的地下连续墙,其抗渗质量标准可按现行国家标准地下防水工程施工质量验收规范GB50208执行。4.4地下墙槽段间的连接接头形式,应根据地下墙的使用要求选用,且应考虑施工单位的经验,无论选用何种接头,在浇注混凝土前,接头处必须刷洗干净,不留任何泥砂或污物。4.5地下墙与地下室结构顶板、楼板、底板及梁之间连接可预埋钢筋或接驳器(锥螺纹或直螺纹),对接驳器也应按原材料检验要求,抽样复验。数量每500套为一个检验批,每批应抽查3件,复验内容为外观、尺寸、抗拉试验等。4.6施工前应检验进场的钢
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 霍尔式转速仪课程设计
- 老王造型烫染课程设计
- 砂石桩课程设计
- 工程网络计划图课程设计
- 学校保安项目实施方案
- 钱如数课程设计题目
- 小学房屋安全排查整治工作方案
- 2024年老年人健康管理工作总结
- 少先队基本知识教育活动课方案
- 课程设计圆盒高清版
- 高考模拟话题作文“单纯、高贵、宁静”写作
- 植物检疫学知到章节答案智慧树2023年华南农业大学
- 并馈式自立铁塔中波天线
- 2024年航天知识总结
- 绩效评价报告(失业保险基金项目)
- 万物之理-爱因斯坦之梦智慧树知到答案章节测试2023年中国海洋大学
- 高速铁路列车餐饮服务PPT完整全套教学课件
- NG30周边传动浓缩机技术说明
- 岭南药食文化
- 审计职业生涯发展规划书
- 工程竣工验收报告甲方
评论
0/150
提交评论