




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Three kinds of Cluster Analysis MethodsSupervisor: Tingjun HouReporter: Qian ZhangCluster analysis, which can also be called unsupervised classification, is used to group a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense or another) to e
2、ach other than to those in other groups (clusters).Different kinds of Cluster:Cluster analysis, which can also be called unsupervised classification, is used to group a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense or another) to each
3、other than to those in other groups (clusters).Different kinds of Cluster:Cluster analysis, which can also be called unsupervised classification, is used to group a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense or another) to each othe
4、r than to those in other groups (clusters).Different kinds of Cluster:K-means clusteringK-means clustering aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean, serving as a prototype of the cluster.Algorithm:Distance between centrio
5、ds and pointsk initial centroidsClusterRecalculate centriodsCentriods changeOutput centriodsYNK-means clustering+A,B,C,D=kmeans(data,n); (Matlab)K-means clusteringTime cost: O(num*k*m)Space cost: O(k+m)num : number of the iterations, usually bounded.k: number of the clusterm: number of pointsTime co
6、st O(m)Space cost O(m) Advantage: simple and fast, centroids will be returned.Disadvantage: results depend on the initial centroids, and outliers will influence the clustering. Note: If this method is used, it needs to be done for several time to get the best result.Hierarchical ClusteringHierarchic
7、al clustering is a method of cluster analysis which seeks to build a hierarchy of clusters. Strategies for hierarchical clustering generally fall into two types: agglomerative and divisive hierarchical clustering.Algorithm:Distance matrixMerge the nearest two points as a clusterAll points be assigne
8、dOutput resultNYAgglomerative: This is a bottom up approach: each observation starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy.Agglomerative Hierarchical Clusteringtree=rand(5,6); (Matlab)dist=pdist(tree)10.2077420.1947640.3111020.9797480.5948960.11741820.301
9、2460.2259220.923380.438870.2622120.29667630.4709230.1707080.4302070.1111190.6028430.31877840.2304880.2276640.1848160.2580650.7112160.42416750.8443090.4356990.9048810.408720.2217470.50785812345100.9055160.9376330.8037421.19732920.90551600.7063970.8950050.62161930.9376330.70639700.407080.83934740.8037
10、420.8950050.4070801.09901251.1973290.6216190.8393471.0990120Agglomerative Hierarchical Clustering340.40708250.621619670.706397180.803742link=linkage(dist)dendrogram(link)Agglomerative Hierarchical Clustering0.2077420.1947640.3111020.9797480.5948960.1174180.3012460.2259220.923380.438870.2622120.29667
11、60.4709230.1707080.4302070.1111190.6028430.3187780.2304880.2276640.1848160.2580650.7112160.4241670.8443090.4356990.9048810.408720.2217470.50785812345100.9055160.9376330.8037421.19732920.90551600.7063970.8950050.62161930.9376330.70639700.407080.83934740.8037420.8950050.4070801.09901251.1973290.621619
12、0.8393471.0990120Agglomerative Hierarchical Clustering0.2077420.1947640.3111020.9797480.5948960.1174180.3012460.2259220.923380.438870.2622120.2966760.4709230.1707080.4302070.1111190.6028430.3187780.2304880.2276640.1848160.2580650.7112160.4241670.8443090.4356990.9048810.408720.2217470.50785812345100.
13、9055160.9376330.8037421.19732920.90551600.7063970.8950050.62161930.9376330.70639700.407080.83934740.8037420.8950050.4070801.09901251.1973290.6216190.8393471.0990120Agglomerative Hierarchical Clustering0.2077420.1947640.3111020.9797480.5948960.1174180.3012460.2259220.923380.438870.2622120.2966760.470
14、9230.1707080.4302070.1111190.6028430.3187780.2304880.2276640.1848160.2580650.7112160.4241670.8443090.4356990.9048810.408720.2217470.5078581265100.9055160.8037421.19732920.90551600.7063970.62161960.8037420.70639700.83934751.1973290.6216190.83934706Agglomerative Hierarchical Clustering0.2077420.194764
15、0.3111020.9797480.5948960.1174180.3012460.2259220.923380.438870.2622120.2966760.4709230.1707080.4302070.1111190.6028430.3187780.2304880.2276640.1848160.2580650.7112160.4241670.8443090.4356990.9048810.408720.2217470.5078581265100.9055160.8037421.19732920.90551600.7063970.62161960.8037420.70639700.839
16、34751.1973290.6216190.83934706Agglomerative Hierarchical Clustering0.2077420.1947640.3111020.9797480.5948960.1174180.3012460.2259220.923380.438870.2622120.2966760.4709230.1707080.4302070.1111190.6028430.3187780.2304880.2276640.1848160.2580650.7112160.4241670.8443090.4356990.9048810.408720.2217470.50
17、7858167100.9055160.80374260.90551600.70639770.9376330.706397067Agglomerative Hierarchical Clustering0.2077420.1947640.3111020.9797480.5948960.1174180.3012460.2259220.923380.438870.2622120.2966760.4709230.1707080.4302070.1111190.6028430.3187780.2304880.2276640.1848160.2580650.7112160.4241670.8443090.
18、4356990.9048810.408720.2217470.507858167100.9055160.80374260.90551600.70639770.9376330.706397067Agglomerative Hierarchical Clustering0.2077420.1947640.3111020.9797480.5948960.1174180.3012460.2259220.923380.438870.2622120.2966760.4709230.1707080.4302070.1111190.6028430.3187780.2304880.2276640.1848160
19、.2580650.7112160.4241670.8443090.4356990.9048810.408720.2217470.50785818100.80374280.8037420678Divisive: This is a top down approach: all observations start in one cluster, and splits are performed recursively as one moves down the hierarchy.Divisive Hierarchical ClusteringAlgorithm: It has many met
20、hods, here Minimum Spanning Tree Clustering will introduced. Distance matrixGenerete MSTRemain one clusterOutput resultNYCut longest edgeDivisive Hierarchical Clustering12345100.9055160.9376330.8037421.19732920.90551600.7063970.8950050.62161930.9376330.70639700.407080.83934740.8037420.8950050.407080
21、1.09901251.1973290.6216190.8393471.0990120Distance matrix123450.9060.7060.9380.8041.1971.0990.4070.8390.6210.895Divisive Hierarchical Clustering123450.9060.7060.9380.8041.1971.0990.4070.8390.6210.895Divisive Hierarchical Clustering123450.9060.7060.9380.8041.1971.0990.4070.8390.6210.895Divisive Hiera
22、rchical Clustering123450.9060.7060.9380.8041.1971.0990.4070.8390.6210.895Divisive Hierarchical Clustering123450.9060.7060.9380.8041.1971.0990.4070.8390.6210.895Divisive Hierarchical Clustering123450.9060.7060.9380.8041.1971.0990.4070.8390.6210.895Divisive Hierarchical Clustering123450.9060.7060.9380
23、.8041.1971.0990.4070.8390.6210.895Divisive Hierarchical Clustering123450.7060.8040.4070.621Divisive Hierarchical Clustering123450.7060.8040.4070.6211,2,3,4,5Divisive Hierarchical Clustering12,3,4,5123450.7060.8040.4070.621Divisive Hierarchical Clustering12,53,4123450.7060.8040.4070.621Divisive Hiera
24、rchical Clustering1253,4123450.7060.8040.4070.621Divisive Hierarchical Clustering1253,4123450.7060.8040.4070.621340.40708250.621619670.706397180.803742Hierarchical ClusteringAgglomerativeDivisive(MST)Time costO(m2logm)O(m2)Space costO(m2)AdvantageHierarchical model will returnDistanvageTime and spac
25、e consuming, methods to calculate the distance between clusters is hard to determineTime and space consumingNoteUsually used to build a treeDensity-based ClusteringIn this method, clusters are defined as areas of higher density than the remainder of the data set. Objects in these sparse areas - that
26、 are required to separate clusters - are usually considered to be noise and border points.The most popular density based clustering method is DBSCAN(Density-based spatial clustering of applications with noise).ABCEpsEps: if two points distance is smaller than eps, they are defined as neighbor.Minpts
27、: the threshold to define one core point.Core point: point has more than minpts neighbors.Border point: not core point, but its neighbor.Noise point: not core point, not border point.Density-based ClusteringAlgorithm: Core pointBorder pointNoise pointNeighbor CoreP in same clusterAssign border point to clustersOutputRaw dataNeighbor MinptsYNeighbor of CorePN
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届四川省德阳市重点中学物理高二第二学期期末经典模拟试题含解析
- 互联网+教育行业互联网+教育行业资金申请报告
- 2025届上海市宝山区高境一中物理高二下期末检测模拟试题含解析
- 互联网医疗平台2025年在线问诊服务质量提升与医疗技术创新报告001
- 会昌县中考数学试卷
- 黄冈密卷九年级数学试卷
- 2025年云南省澜沧县民族中学物理高二下期末学业质量监测模拟试题含解析
- 河北省石家庄市2025届物理高二第二学期期末统考模拟试题含解析
- 2025届浙江诸暨中学高一物理第二学期期末学业质量监测模拟试题含解析
- 2025届河南省开封十中物理高一第二学期期末综合测试模拟试题含解析
- 2024至2030年中国民爆行业深度调研及投资战略分析报告
- 游乐场游乐园安全生产责任制
- ISO∕IEC 27014-2020 信息安全、网络安全与隐私保护-信息安全治理(中文版-雷泽佳译2024)
- 安徒生童话《枞树》
- 房产测量规范
- 蓄滞洪区设计规范(2021年版)-标准全文
- 生态保护修复成效评估技术指南(试行)(HJ 1272-2022)
- 建筑抗震设计标准 DG-TJ08-9-2023
- (正式版)JBT 9634-2024 汽轮机冷油器(管式)尺寸系列和技术规范
- 2024年高级政工师理论知识考试题库(浓缩500题)
- 20KV及以下配电网工程建设预算编制与计算规定
评论
0/150
提交评论