版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021届新高考“8+4+4小题狂练19一、单项选择题.此题共8小题,每题5分,共40分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.已经知道集合,那么 A. B. C. D. 【答案】B【解析】【分析】解出集合、中的不等式即可.【详解】因为,所以应选:B【点睛】此题考查的是一元二次不等式的解法、指数不等式的解法和集合的运算,较简单.2.已经知道复数满足,其中为复数的共轭复数,那么实数 A. B. C. D. 或【答案】C【解析】【分析】根据条件得到,代入已经知道等式,即可求得实数的值【详解】由题意得,所以,所以由,得,得应选:C.【点睛】此题主要考查复数的四那么运算及共轭复数
2、等,考查考生对复数四那么运算的掌握情况及运算求解能力,属于基础题.3.假设,那么A. B. C. D. 【答案】B【解析】【详解】分析:由公式可得结果.详解:应选B.点睛:此题主要考查二倍角公式,属于基础题.4.函数的大致图象为 A. B. C. D. 【答案】B【解析】【分析】当时,可排除AD;当时,可排除C,得到答案.【详解】当时,可排除AD;当时,可排除C.应选:B.【点睛】此题考查函数图象的运用,考查数形结合思想,属于基础题.5.已经知道,那么“是“的 A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】【分析】通过对数函数的单调性和举
3、反例,并借助充分条件和必要条件的定义判断即可.【详解】因为,所以由,得,所以,所以,那么充分性成立;当时,但是无意义,故必要性不成立.综上,已经知道,那么“是“的充分不必要条件.应选:A.【点睛】此题主要考查充分条件和必要条件的判断,考查学生的逻辑推理能力,属于基础题.假设想说明一个式子不成立,可以采用举反例法,给出一个反例即可.6.已经知道双曲线与抛物线的一个交点为为抛物线的焦点,假设,那么双曲线的渐近线方程为 A. B. C. D. 【答案】C【解析】由抛物线定义得,因此双曲线的渐近线方程为,选C.点睛:1.凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理 2假设为抛物线上
4、一点,由定义易得;假设过焦点的弦 AB的端点坐标为,那么弦长为可由根与系数的关系整体求出;假设遇到其他标准方程,那么焦半径或焦点弦长公式可由数形结合的方法类似地得到7.我国古代数学名著数书九章中有“天池盆测雨题,大概意思如下:在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为2尺8寸,盆底直径为1尺2寸,盆深1尺8寸.假设盆中积水深9寸,那么平均降雨量是注:平均降雨量等于盆中积水体积除以盆口面积;1尺等于10寸;台体的体积 A. 3寸B. 4寸C. 5寸D. 6寸【答案】A【解析】【分析】作出圆台的轴截面,根据已经知道条件,利用圆台体积公式可求得盆中积水体积,再求出盆口面积,根据平均降水量
5、的定义可求得结果.【详解】作出圆台的轴截面如下图:由题意知,寸,寸,寸,寸,即是的中点,为梯形的中位线,寸,即积水的上底面半径为寸,盆中积水的体积为立方寸,又盆口的面积为平方寸,平均降雨量是寸,即平均降雨量是3寸,应选:A【点睛】此题考查圆台体积的有关计算,关键是能够根据轴截面得到所求圆台的上下底面半径和高,考查运算能力.8.如图,正方体的棱长为2,点为底面的中心,点在侧面的边界及其内部运动假设,那么面积的最大值为 A. B. C. D. 【答案】C【解析】【分析】取的中点,由题意结合正方体的几何特征及平面几何的知识可得,由线面垂直的判定与性质可得,进而可得点的轨迹为线段,找到的最大值即可得解
6、.【详解】取的中点,连接、,连接、,如图:因为正方体的棱长为2,所以,,平面,平面,平面,所以,所以,所以,由可得平面,所以,所以点的轨迹为线段,又,所以面积的最大值.应选:C.【点睛】此题考查了正方体几何特征的应用,考查了线面垂直的判定与性质,关键是找到点的轨迹,属于中档题.二、多项选择题本大题共4小题,每题5分,共20分,在每题给出的四个选项中,有多项符合题目要求的,全选对得5分,选对但不全的得3分,有选错的得0分.9.随着2022年北京冬奥会的临近,中国冰雪产业快速发展,冰雪运动人数快速上升,冰雪运动市场需求得到释放.如图是2021-2018年中国雪场滑雪人数单位:万人与同比增长情况统计
7、图那么下面结论中正确的选项是 .A. 2021-2018年,中国雪场滑雪人数逐年增加;B. 2021-2021年,中国雪场滑雪人数和同比增长率均逐年增加;C. 中国雪场2021年比2021年增加的滑雪人数和2018年比2017年增加的滑雪人数均为220万人,因此这两年的同比增长率均有提高;D. 2016-2018年,中国雪场滑雪人数的增长率约为23.4%.【答案】AB【解析】【分析】根据条形图判断人数增减性,即可判断A;根据折线图判断同比增长率增减性,即可判断B; 根据折线图判断同比增长率,即可判断C;计算2016-2018年滑雪人数的增长率可判断D.【详解】根据条形图知,2021-2018年
8、,中国雪场滑雪人数逐年增加,所以A正确;根据条形图知,2021-2021年,中国雪场滑雪人数逐年增加,根据折线图知,2021-2021年,中国雪场滑雪人数同比增长率逐年增加,所以B正确;根据条形图知,中国雪场2021年比2021年增加的滑雪人数为万人,2018年比2017年增加的滑雪人数为万人,根据折线图知,2021年比2021年同比增长率上升,但2018年比2017年同比增长率有下降,故C错误;2016-2018年,中国雪场滑雪人数的增长率约为,故D错误;应选:AB【点睛】此题考查条形图与折线图、增长率,考查数据分析能力,属基础题.10.将函数的图象向右平移个单位长度,再向上平移1个单位长度
9、,得到的图象,假设,且,那么的可能取值为 A. B. C. 1D. 0【答案】BC【解析】【分析】由三角函数图象变换得出的解析式,然后由正弦函数性质求出的可能值,再判断各选项【详解】由题意,的最大值为3,最小值为1,因此,那么,由得,又,所以,设,那么,那么当偶数例如时,1,当奇数例如时,1,应选:BC【点睛】此题考查三角函数的图象变换,考查正弦函数的性质解题关键是利用正弦函数性质得出的所有可能取值11.设双曲线的左,右焦点分别为,过的直线l分别与双曲线左右两支交于两点,以为直径的圆过,且,那么以下结论正确的选项是 A. ;B. 双曲线C的离心率为;C. 双曲线C的渐近线方程为;D. 直线l的
10、斜率为1.【答案】BC【解析】【分析】由推导出,然后根据双曲线的定义推理判断各选项【详解】如图,作于,那么,所以,所以是中点,从而,根据双曲线定义,所以,又以为直径的圆过,所以,于是,A错;又得,由余弦定理得,化简得,所以,B正确;由得,即,所以渐近线方程为,C正确;易知,所以,D错应选:BC【点睛】此题考查直线与双曲线相交问题,考查双曲线的离心率、渐近线方程,考查平面向量的数量积,解题关键是由数量积的关系得出等腰三角形,由双曲线的定义得出各线段长用表示此题属于中档题12.如图,在边长为4的正三角形中,E为边的中点,过E作于D.把沿翻折至的位置,连结.翻折过程中,其中正确的结论是 A. ;B.
11、 存在某个位置,使;C. 假设,那么的长是定值;D. 假设,那么四面体的体积最大值为【答案】ACD【解析】【分析】根据线面垂直的性质判断A,B;取中点,可证明,从而可计算出,判断C;折叠过程中,不动,当到平面的距离最大时,四面体的体积最大,从而计算出最大体积后判断D【详解】由,得平面,又平面,所以,A正确;假设存在某个位置,使,如图,连接,因为,所以,连接,正中,所以平面,而平面,所以,由选项A的判断有,且,平面,平面,所以平面,又平面,所以,那么,这是不可能的,事实上,B错;设是中点,连接,那么,所以,从而,是中点,所以,假设,即,所以,所以,且由得,所以,边长为4,那么,为定值,C正确;折
12、叠过程中,不变,不动,当到平面距离最大时,四面体的体积最大,由选项的判断知当平面时,到平面的距离最大且为,又,所以此最大值为,D正确应选:ACD【点睛】此题考查折叠过程中的线面间的位置关系,考查线面垂直的判定与性质,考查棱锥的体积计算,此题考查学生的分析问题解决问题的能力,考查空间想象能力,属于中档题三、填空题本大题共4小题,每题5分,共20分13.已经知道随机变量服从正态分布,且,那么 .【答案】【解析】试题分析:正态分布均值为,故.考点:正态分布14.假设多项式,那么_.【答案】【解析】【分析】由二项式定理及其展开式通项公式得展开式的通项为,令,解得,那么,得解【详解】由展开式的通项为,令
13、,解得,那么,故答案为:【点睛】此题考查了二项式定理及其展开式通项公式,意在考查学生对这些知识的理解掌握水平15.的内角的对边分别为,假设,那么_,的最大值是_【答案】 (1). (2). 【解析】【分析】1由可得与的关系,即可求得的值;2利用诱导公式将用、表示,再利用基本不等式,即可得答案;【详解】,;由于求的最大值,只需考虑的情况,所以,等号成立当且仅当.故答案为: ;.【点睛】此题考查正弦定理、诱导公式、基本不等式求最值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意利用基本不等式求最值,要考虑等号成立的条件.16.已经知道函数的导函数为,且对任意的实数都有(是自然对数的底数),且,假设关于的不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大班面条舞听评课记录
- 不等式的解集听评课记录
- 山东省济南市平阴县2024-2025学年七年级上学期期末数学模拟试题(无答案)
- 《文化安全》课件
- 《货款结算篇》课件
- 《生态旅游管理》课件
- 《个能力标准》课件
- 商务文书上新课件
- 全市卫生法制与监督工作计划例文
- 四川某石化项目钢结构施工方案
- 大学生职业生涯规划舞蹈学专业
- 果树病虫害的防治
- 幼儿园装修设计的尺寸说明
- 学生公寓的工作总结
- 呼吸内科出科小结轮转护士
- 某工程管理咨询公司职位体系咨询报告
- 厦门大学2022年826物理化学考研真题(含答案)
- 中医经典代表书籍及其解读培训课件
- 体育冰雪课程的教学计划、单元计划、课时计划
- 人工智能技术在税务服务中的应用
- 【写作】叙事要有波澜-【中职专用】高一语文同步课件(高教版2023·基础模块上册)
评论
0/150
提交评论