利用椭圆的定义妙解3类问题_第1页
利用椭圆的定义妙解3类问题_第2页
利用椭圆的定义妙解3类问题_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、利用椭圆的定义妙解3类问题椭圆定义反映了椭圆的本质特征,揭示了曲线存在的几何性质有些问题,如果恰当运用定义来解决,可以起到事半功倍的效果,下面通过几个例子进行说明1求最值例1线段|AB|4,|PA|PB|6,M是AB的中点,当P点在同一平面内运动时,PM的长度的最小值是()A2 B. C. D5解析由于|PA|PB|64|AB|,故由椭圆定义知P点的轨迹是以M为原点,A、B为焦点的椭圆,且a3,c2,b.于是PM的长度的最小值是b.答案C2求动点坐标例2椭圆上到两个焦点F1,F2距离之积最大的点的坐标是_解析设椭圆上的动点为P,由椭圆的定义可知|PF1|PF2|2a10,所以|PF1|PF2|

2、 25,当且仅当|PF1|PF2|时取等号由 解得|PF1|PF2|5a,此时点P恰好是椭圆短轴的两端点,即所求点的坐标为(3,0)答案(3,0)点评由椭圆的定义可得“|PF1|PF2|10”,即两个正数|PF1|,|PF2|的和为定值,结合基本不等式可求|PF1|,|PF2|积的最大值,结合图形可得所求点P的坐标3求焦点三角形面积例3如图所示,已知椭圆的方程为,若点P在第二象限,且PF1F2120,求PF1F2的面积解由已知得a2,b,所以c,|F1F2|2c2.在PF1F2中,由余弦定理得|PF2|2|PF1|2|F1F2|22|PF1|F1F2|cos 120,即|PF2|2|PF1|242|PF1|,由椭圆定义,得|PF1|PF2|4,即|PF2|4|PF1|.将代入,得|PF1|.所以SPF1F2|PF1|F1F2|sin 1202,即PF1F2的面积是.点评在PF1F2中,由椭圆的定义及余弦定理可得关于|PF1|,|PF2|的方程组,消去|PF2|可求|PF1|.从以上问题,我们

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论