版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若曲线,在点处的切线分别为,且,则的值为( )AB2CD2某校高中三个年级人数饼图如图所示,按年级用分层抽样的方法抽取一个样本,已知样本中高一年级学生有8人,则样本容量为( )A2
2、4B30C32D353已知某同学在高二期末考试中,A和B两道选择题同时答对的概率为,在A题答对的情况下,B题也答对的概率为,则A题答对的概率为( )ABCD4若双曲线的一条渐近线为,则实数()AB2C4D5用数学归纳法证明 过程中,假设时,不等式成立,则需证当时,也成立,则( )ABCD6函数 的单调递增区间是( )ABC(1,4)D(0,3)7若函数fx=3sin-x+sin52+x,且fA2k-23Ck-5128已知双曲线的两个焦点分别为,过右焦点作实轴的垂线交双曲线于,两点,若是直角三角形,则双曲线的离心率为( )ABCD9现将甲、乙、丙、丁四个人安排到座位号分别是的四个座位上,他们分别
3、有以下要求,甲:我不坐座位号为和的座位;乙:我不坐座位号为和的座位;丙:我的要求和乙一样;丁:如果乙不坐座位号为的座位,我就不坐座位号为的座位.那么坐在座位号为的座位上的是( )A甲B乙C丙D丁10设函数满足则时,( )A有极大值,无极小值B有极小值,无极大值C既有极大值又有极小值D既无极大值也无极小值11某中学从4名男生和3名女生中推荐4人参加某高校自主招生考试,若这4人中必须既有男生又有女生,则不同的选法共有( )A34 种B35 种C120 种D140 种12过点作曲线的切线,则切线方程为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知函数有两个零点,则下列判断:;
4、有极小值点,且.则正确判断的个数是_.14已知函数,且过原点的直线与曲线相切,若曲线与直线轴围成的封闭区域的面积为,则的值为_15从字母中选出个字母排成一排,其中一定 要选出和,并且它们必须相邻(在前面),共有排列方法_种.16若对满足的任意正实数,都有,则实数的取值范围为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,已知圆心为的圆经过原点()求圆的方程;()设直线与圆交于,两点若,求的值18(12分)已知复数,是的共轭复数,且为纯虚数,在复平面内所对应的点在第二象限,求.19(12分)三个内角A,B,C对应的三条边长分别是,且满足(1)求角的大小;(2
5、)若,求20(12分)把编号为1、2、3、4、5的小球,放入编号为1、2、3、4、5的盒子中.(1)恰有两球与盒子号码相同;(2)球、盒号码都不相同,问各有多少种不同的方法21(12分)已知函数(1)解不等式;(2)记函数的值域为M,若,证明:22(10分)已知函数(1)当时,求函数在上的最大值和最小值;(2)当函数在上单调时,求的取值范围参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】试题分析:因为,则f(1)=,g(1)=a,又曲线a在点P(1,1)处的切线相互垂直,所以f(1)g(1)=-1,即,所以a=-1故选
6、A考点:利用导数研究曲线上某点切线方程2、C【解析】分析:本题考查的知识点是分层抽样,根据分层抽样的方法,由样本中高一年级学生有8人,所占比例为25%,即可计算.详解:由分层抽样的方法可设样本中有高中三个年级学生人数为x人,则,解得:.故选:C.点睛:分层抽样的方法步骤为:首先确定分层抽取的个数,分层后,各层的抽取一定要考虑到个体数目,选取不同的抽样方法,但一定要注意按比例抽取,其中按比例是解决本题的关键.3、B【解析】分析:根据条件概率公式计算即可.详解:设事件A:答对A题,事件B:答对B题,则,.故选:B.点睛:本题考查了条件概率的计算,属于基础题.4、C【解析】根据双曲线的标准方程求出渐
7、近线方程,根据双曲线的一条渐近线求得m的值【详解】双曲线中,令,得,所以;又双曲线的一条渐近线为,则,解得,所以实数故选:C【点睛】本题考查了利用双曲线的标准方程求渐近线方程的应用问题,是基础题5、C【解析】故选6、B【解析】求出函数的导数,在解出不等式可得出所求函数的单调递增区间.【详解】,解不等式,解得,因此,函数的单调递增区间是,故选B.【点睛】本题考查函数单调区间的求解,一般是先求出导数,然后解出导数不等式,将解集与定义域取交集得出单调区间,但单调区间不能合并,考查计算能力,属于中等题.7、A【解析】本题首先要对三角函数进行化简,再通过- 的最小值是2推出函数的最小正周期,然后得出【详
8、解】fx= =3sin =2sin再由f=2,f=0,- 的最小值是fx=2sinx+x2k-23【点睛】本题需要对三角函数公式的运用十分熟练并且能够通过函数图像的特征来求出周期以及增区间8、B【解析】分析:由题意结合双曲线的结合性质整理计算即可求得最终结果.详解:由双曲线的对称性可知:,则为等腰直角三角形,故,由双曲线的通径公式可得:,据此可知:,即,整理可得:,结合解方程可得双曲线的离心率为:.本题选择B选项.点睛:双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:求出a,c,代入公式;只需要根据一个条件得到关于a,b,c的齐次式,结合b2c2
9、a2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围)9、C【解析】对甲分别坐座位号为3或4分类推理即可判断。【详解】当甲坐座位号为3时,因为乙不坐座位号为1和4的座位所以乙只能坐座位号为2,这时只剩下座位号为1和4又丙的要求和乙一样,矛盾,故甲不能坐座位号3.当甲坐座位号为4时,因为乙不坐座位号为1和4的座位,丙的要求和乙一样:所以丁只能坐座位号1,又如果乙不坐座位号为2的座位,丁就不坐座位号为1的座位.所以乙只能坐座位号2,这时只剩下座位号3给丙。所以坐在座位号为3的座位上的是丙.故选:C【点睛】本题主要考查了
10、逻辑推理能力,考查了分类思想,属于中档题。10、D【解析】函数满足,令,则,由,得,令,则在上单调递减,在上单调递增,的最小值为.又在单调递增,既无极大值也无极小值,故选D.考点:1、利用导数研究函数的单调性;2、利用导数研究函数的极值及函数的求导法则.【方法点睛】本题主要考察抽象函数的单调性以及函数的求导法则,属于难题.求解这类问题一定要耐心读题、读懂题,通过对问题的条件和结论进行类比、联想、抽象、概括,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:根据导函数的“形状”变换不等式“形状”;若是选择题,可根据选项的共性归纳构造
11、恰当的函数.本题通过观察导函数的“形状”,联想到函数,再结合条件判断出其单调性,进而得出正确结论.11、A【解析】分析:根据题意,选用排除法,分3步,计算从7人中,任取4人参加志愿者活动选法,计算选出的全部为男生或女生的情况数目,由事件间的关系,计算可得答案详解:分3步来计算,从7人中,任取4人参加志愿者活动,分析可得,这是组合问题,共C74=35种情况;选出的4人都为男生时,有1种情况,因女生只有3人,故不会都是女生,根据排除法,可得符合题意的选法共35-1=34种;故选A点睛:本题考查计数原理的运用,注意对于本类题型,可以使用排除法,即当从正面来解所包含的情况比较多时,则采取从反面来解,用
12、所有的结果减去不合题意的结果12、C【解析】设出切点坐标求出原函数的导函数,得到函数在时的导数值,即切线的斜率,然后由直线方程的点斜式得切线方程,代入已知点的坐标后求出切点的坐标,则切线方程可求【详解】由,得,设切点为则 ,切线方程为 ,切线过点,ex0ex0(1x0),解得: 切线方程为 ,整理得:.故选C.【点睛】本题考查了利用导数研究过曲线上某点的切线方程,过曲线上某点处的切线的斜率,就是函数在该点处的导数值,是中档题二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】对函数进行求导,然后分类讨论函数的单调性,由题意可以求出的取值范围,然后对四个判断逐一辨别真假即可.【详解】
13、,.当时,函数是单调递增函数,而,所以函数只有一个零点,不符合题意;当时,当时,函数单调递增,当时,函数递减,故函数的最小值为,要想函数有两个零点,则必有,故判断不对;对于:,取,所以,故判断不对;对于:构造函数,所以函数是上单调递增,故,而,所以,故本判断是正确的;对于:因为,而,所以有,故本判断是错误的,故正确的判断的个数为1.【点睛】本题考查了利用导数研究函数的零点、极值点,考查了推理论证能力.14、【解析】分析:先根据导数几何意义求切点以及切线方程,再根据定积分求封闭区域的面积,解得的值.详解:设切点,因为,所以所以当时封闭区域的面积为因此,当时,同理可得,即点睛:利用定积分求曲边图形
14、面积时,一定要找准积分上限、下限及被积函数当图形的边界不同时,要分不同情况讨论15、36【解析】从剩余的4个字母中选取2个,再将这2个字母和整体进行排列,根据分步计数原理求得结果【详解】由于已经选出,故再从剩余的4个字母中选取2个,方法有种,再将这2个字母和整体进行排列,方法有种,根据分步计数原理求得所有的排列方法共有种,故答案为36.【点睛】本题主要考查排列与组合及两个基本原理的应用,属于中档题16、【解析】分析:正实数满足,可求得,由可求得恒成立,利用双钩函数性质可求得a的取值范围.详解:因为,又因为正实数满足解得:由可求得根据双钩函数性质可知,当时有最小值所以的取值范围为点睛:(1)基本
15、不等式是每年高考中必考的考点,要熟练掌握;(2)恒成立问题要注意首选方法是分离参数,将参数分离后让不等式的另一边构造为一个新函数,从而解决新函数的最值是这类问题的基本解题思路.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、()()【解析】试题分析:()由两点间距离公式求出圆C的半径,由此能求出圆C的方程;()作CDAB于D,则CD平分线段AB,从在则 |AD| |AB| 4,由勾股定理求出CD,由点到直线的距离公式求出CD,由此能求出m试题解析:()解:圆的半径,从而圆的方程为()解:作于,则平分线段,所以在直角三角形中,由点到直线的距离公式,得,所以,解得考点:圆的标准
16、方程;直线与圆相交的性质18、【解析】设,根据题意列出关于的方程组求解,再结合所对应的点在第二象限,即可求出【详解】设,则,又,.,联立,解得又在第二象限,即 故答案为【点睛】本题考查了复数的相关定义,设出复数的表示形式,根据题意列出方程组即可,本题较为基础,注意计算。19、 (2) 【解析】由正弦定理及,得,因为,所以;由余弦定理,解得【详解】由正弦定理得,由已知得,因为,所以由余弦定理,得即,解得或,负值舍去,所以【点睛】解三角形问题,常要求正确选择正弦定理或余弦定理对三角形中的边、角进行转换,再进行求解,同时注意三角形当中的边角关系,如内角和为180度等20、 (1)20;(2)44.【
17、解析】(1)由题意结合排列组合公式和乘法原理即可求得恰有两球与盒子号码相同的种数;(2)利用全错位排列的递推关系式可得球、盒号码都不相同的方法种数.【详解】(1)易知3个球、盒号码都不相同共有2种情况,则恰有两球与盒子号码相同的排列方法种数为:种;(2)利用全错位排列的递推关系式:可得:,即球、盒号码都不相同共有44种方法.【点睛】本题主要考查排列组合公式的应用,全错位排列的递推关系式等知识,意在考查学生的转化能力和计算求解能力.21、 (1) (2)见解析【解析】(1)根据绝对值定义将不等式化为三个不等式组,分别求解,最后求并集,(2)根据绝对值三角不等式得最小值,即得值域为,再作差并因式分解,根据各因子符号确定差的符号即得结果.【详解】(1)依题意,得于是得或或解得.即不等式的解集为.(2),当且仅当时,取等号,.原不等式等价于., . .【点睛】含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向22、 (1) 函数在最
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年发布:版权授权合同范例
- 2024年太原客运资格证应用能力试题
- 2024年信阳道路旅客运输从业资格证模拟考试
- 2023届新高考化学选考一轮总复习训练-热点16 官能团的性质与有机反应类型
- 2024年乌鲁木齐客运从业资格证考试答题技巧与方法
- 2024年朔州客运从业资格证的考题
- 2024年加油站计量与质量检测设备采购承包合同
- 教师资格考试小学教育教学知识与能力试题与参考答案
- 《第二节 区域工业化与城市化-以我国珠江三角洲地区为例》(同步训练)高中地理必修3
- 基于流固耦合的加筋膨胀土边坡稳定性分析
- 统编版语文六年级上册第八单元大单元整体教学设计
- 教师个人业务学习笔记(41篇)
- 2025年高考语文复习备考复习策略讲座
- 数学史上的三次数学危机
- 2024年水电暖安装承包合同
- 缺乳(乳汁淤积)产妇的中医护理
- 2024北师大版新教材初中数学七年级上册内容解读课件(深度)
- 2024年公共营养师三级考试试卷及答案
- 2024年上半年软考信息系统项目管理师真题
- 北京市西城区2023-2024学年高一下学期期末英语试题(解析版)
- 三位数乘两位数乘法竖式计算练习100道及答案
评论
0/150
提交评论