2022届黑龙江省齐齐哈尔市普通高中联谊校高三下学期第一次联考数学试卷含解析_第1页
2022届黑龙江省齐齐哈尔市普通高中联谊校高三下学期第一次联考数学试卷含解析_第2页
2022届黑龙江省齐齐哈尔市普通高中联谊校高三下学期第一次联考数学试卷含解析_第3页
2022届黑龙江省齐齐哈尔市普通高中联谊校高三下学期第一次联考数学试卷含解析_第4页
2022届黑龙江省齐齐哈尔市普通高中联谊校高三下学期第一次联考数学试卷含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1函数的图象可能是( )ABCD2已知正四面体的棱长为,是该正四面体外接球球心,且,则( )ABCD3函数的定义域为,集合,则( )ABCD4已知点,是函数的函数图像上的任意两点,且在点处的切线与直线AB平行,则( )A,b为任意非零实数

2、B,a为任意非零实数Ca、b均为任意实数D不存在满足条件的实数a,b5已知,如图是求的近似值的一个程序框图,则图中空白框中应填入ABCD6定义在上的函数满足,则()A-1B0C1D27某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论中不正确的是( )注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.A互联网行业从业人员中90后占一半以上B互联网行业中从事技术岗位的人数超过总人数的C互联网行业中从事运营岗位的人数90后比80前多D互联网行业中从事技术岗位的人数90后比

3、80后多8设命题函数在上递增,命题在中,下列为真命题的是( )ABCD9我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数(即质数)的和”,如,在不超过20的素数中,随机选取两个不同的数,其和等于20的概率是( )ABCD以上都不对10已知抛物线和点,直线与抛物线交于不同两点,直线与抛物线交于另一点给出以下判断:直线与直线的斜率乘积为;轴;以为直径的圆与抛物线准线相切.其中,所有正确判断的序号是( )ABCD11已知函数,集合,则( )ABCD12设点,P为曲线上动点,若点A,P间距离的最小值为,则实数t的值为( )ABCD二、填空题:

4、本题共4小题,每小题5分,共20分。13已知实数 满足,则的最大值为_.14关于函数有下列四个命题:函数在上是增函数;函数的图象关于中心对称;不存在斜率小于且与函数的图象相切的直线;函数的导函数不存在极小值.其中正确的命题有_.(写出所有正确命题的序号)15若实数x,y满足约束条件,则的最大值为_.16已知,其中,为正的常数,且,则的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某保险公司给年龄在岁的民众提供某种疾病的一年期医疗保险,现从名参保人员中随机抽取名作为样本进行分析,按年龄段分成了五组,其频率分布直方图如下图所示;参保年龄与每人每年应交纳的保费如

5、下表所示. 据统计,该公司每年为这一万名参保人员支出的各种费用为一百万元.年龄(单位:岁)保费(单位:元)(1)用样本的频率分布估计总体分布,为使公司不亏本,求精确到整数时的最小值;(2)经调查,年龄在之间的老人每人中有人患该项疾病(以此频率作为概率).该病的治疗费为元,如果参保,保险公司补贴治疗费元.某老人年龄岁,若购买该项保险(取中的).针对此疾病所支付的费用为元;若没有购买该项保险,针对此疾病所支付的费用为元.试比较和的期望值大小,并判断该老人购买此项保险是否划算?18(12分)某市调硏机构对该市工薪阶层对“楼市限购令”态度进行调查,抽调了50名市民,他们月收入频数分布表和对“楼市限购令

6、”赞成人数如下表:月收入(单位:百元)频数51055频率0.10.20.10.1赞成人数4812521(1)若所抽调的50名市民中,收入在的有15名,求,的值,并完成频率分布直方图(2)若从收入(单位:百元)在的被调查者中随机选取2人进行追踪调查,选中的2人中恰有人赞成“楼市限购令”,求的分布列与数学期望(3)从月收入频率分布表的6组市民中分别随机抽取3名市民,恰有一组的3名市民都不赞成“楼市限购令”,根据表格数据,判断这3名市民来自哪组的可能性最大?请直接写出你的判断结果19(12分)某社区服务中心计划按月订购一种酸奶,每天进货量相同,进货成本每瓶5元,售价每瓶7元,未售出的酸奶降价处理,以

7、每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:摄氏度)有关.如果最高气温不低于25,需求量为600瓶;如果最高气温位于区间,需求量为500瓶;如果最高气温低于20,需求量为300瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温天数414362763以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为(单位:元),当六月份这种酸奶一天的进货量为(单位:瓶)时,的数学期望的取值范围?20(12分)如图,在三棱锥中,平面平

8、面,.点,分别为线段,的中点,点是线段的中点.(1)求证:平面.(2)判断与平面的位置关系,并证明.21(12分)如图,四棱锥的底面中,为等边三角形,是等腰三角形,且顶角,平面平面,为中点.(1)求证:平面;(2)若,求二面角的余弦值大小.22(10分)已知函数.(1)若曲线的切线方程为,求实数的值;(2)若函数在区间上有两个零点,求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】先判断函数的奇偶性,以及该函数在区间上的函数值符号,结合排除法可得出正确选项.【详解】函数的定义域为,该函数为偶函数,排除B、

9、D选项;当时,排除C选项.故选:A.【点睛】本题考查根据函数的解析式辨别函数的图象,一般分析函数的定义域、奇偶性、单调性、零点以及函数值符号,结合排除法得出结果,考查分析问题和解决问题的能力,属于中等题.2A【解析】如图设平面,球心在上,根据正四面体的性质可得,根据平面向量的加法的几何意义,重心的性质,结合已知求出的值.【详解】如图设平面,球心在上,由正四面体的性质可得:三角形是正三角形,在直角三角形中,因为为重心,因此,则,因此,因此,则,故选A.【点睛】本题考查了正四面体的性质,考查了平面向量加法的几何意义,考查了重心的性质,属于中档题.3A【解析】根据函数定义域得集合,解对数不等式得到集

10、合,然后直接利用交集运算求解.【详解】解:由函数得,解得,即;又,解得,即,则.故选:A.【点睛】本题考查了交集及其运算,考查了函数定义域的求法,是基础题.4A【解析】求得的导函数,结合两点斜率公式和两直线平行的条件:斜率相等,化简可得,为任意非零实数.【详解】依题意,在点处的切线与直线AB平行,即有,所以,由于对任意上式都成立,可得,为非零实数.故选:A【点睛】本题考查导数的运用,求切线的斜率,考查两点的斜率公式,以及化简运算能力,属于中档题5C【解析】由于中正项与负项交替出现,根据可排除选项A、B;执行第一次循环:,若图中空白框中填入,则,若图中空白框中填入,则,此时不成立,;执行第二次循

11、环:由均可得,若图中空白框中填入,则,若图中空白框中填入,则,此时不成立,;执行第三次循环:由可得,符合题意,由可得,不符合题意,所以图中空白框中应填入,故选C6C【解析】推导出,由此能求出的值【详解】定义在上的函数满足,故选C【点睛】本题主要考查函数值的求法,解题时要认真审题,注意函数性质的合理运用,属于中档题.7D【解析】根据两个图形的数据进行观察比较,即可判断各选项的真假【详解】在A中,由整个互联网行业从业者年龄分别饼状图得到互联网行业从业人员中90后占56%,所以是正确的;在B中,由整个互联网行业从业者年龄分别饼状图,90后从事互联网行业岗位分布条形图得到:,互联网行业从业技术岗位的人

12、数超过总人数的,所以是正确的;在C中,由整个互联网行业从业者年龄分别饼状图,90后从事互联网行业岗位分别条形图得到:,互联网行业从事运营岗位的人数90后比80后多,所以是正确的;在D中,互联网行业中从事技术岗位的人数90后所占比例为,所以不能判断互联网行业中从事技术岗位的人数90后比80后多故选:D.【点睛】本题主要考查了命题的真假判定,以及统计图表中饼状图和条形图的性质等基础知识的应用,着重考查了推理与运算能力,属于基础题.8C【解析】命题:函数在上单调递减,即可判断出真假命题:在中,利用余弦函数单调性判断出真假【详解】解:命题:函数,所以,当时,即函数在上单调递减,因此是假命题命题:在中,

13、在上单调递减,所以,是真命题则下列命题为真命题的是故选:C【点睛】本题考查了函数的单调性、正弦定理、三角形边角大小关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题9A【解析】首先确定不超过的素数的个数,根据古典概型概率求解方法计算可得结果.【详解】不超过的素数有,共个,从这个素数中任选个,有种可能;其中选取的两个数,其和等于的有,共种情况,故随机选出两个不同的数,其和等于的概率故选:.【点睛】本题考查古典概型概率问题的求解,属于基础题.10B【解析】由题意,可设直线的方程为,利用韦达定理判断第一个结论;将代入抛物线的方程可得,从而,进而判断第二个结论;设为抛物线的焦点,以线段为直

14、径的圆为,则圆心为线段的中点设,到准线的距离分别为,的半径为,点到准线的距离为,显然,三点不共线,进而判断第三个结论.【详解】解:由题意,可设直线的方程为,代入抛物线的方程,有设点,的坐标分别为,则,所则直线与直线的斜率乘积为所以正确将代入抛物线的方程可得,从而,根据抛物线的对称性可知,两点关于轴对称,所以直线轴所以正确如图,设为抛物线的焦点,以线段为直径的圆为,则圆心为线段的中点设,到准线的距离分别为,的半径为,点到准线的距离为,显然,三点不共线,则所以不正确故选:B.【点睛】本题主要考查抛物线的定义与几何性质、直线与抛物线的位置关系等基础知识,考查运算求解能力、推理论证能力和创新意识,考查

15、数形结合思想、化归与转化思想,属于难题11C【解析】分别求解不等式得到集合,再利用集合的交集定义求解即可.【详解】,,故选C【点睛】本题主要考查了集合的基本运算,难度容易.12C【解析】设,求,作为的函数,其最小值是6,利用导数知识求的最小值【详解】设,则,记,易知是增函数,且的值域是,的唯一解,且时,时,即,由题意,而,解得,故选:C【点睛】本题考查导数的应用,考查用导数求最值解题时对和的关系的处理是解题关键二、填空题:本题共4小题,每小题5分,共20分。13【解析】作出不等式组所表示的平面区域,将目标函数看作点与可行域的点所构成的直线的斜率,当直线过时,直线的斜率取得最大值,代入点A的坐标

16、可得答案.【详解】画出二元一次不等式组所表示的平面区域,如下图所示,由得点,目标函数表示点与可行域的点所构成的直线的斜率,当直线过时,直线的斜率取得最大值,此时的最大值为.故答案为:. 【点睛】本题考查求目标函数的最值,关键在于明确目标函数的几何意义,属于中档题.14【解析】由单调性、对称性概念、导数的几何意义、导数与极值的关系进行判断【详解】函数的定义域是,由于,在上递增,函数在上是递增,正确;,函数的图象关于中心对称,正确;,时取等号,正确;,设,则,显然是即的极小值点,错误故答案为:.【点睛】本题考查函数的单调性、对称性,考查导数的几何意义、导数与极值,解题时按照相关概念判断即可,属于中

17、档题153【解析】作出可行域,可得当直线经过点时,取得最大值,求解即可.【详解】作出可行域(如下图阴影部分),联立,可求得点,当直线经过点时,.故答案为:3.【点睛】本题考查线性规划,考查数形结合的数学思想,属于基础题.16【解析】把已知等式变形,展开两角和与差的三角函数,结合已知求得值【详解】解:由,得,即,又,解得:为正的常数,故答案为:【点睛】本题考查两角和与差的三角函数,考查数学转化思想方法,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)30;(2),比较划算.【解析】(1)由频率和为1求出,根据的值求出保费的平均值,然后解一元一次不等式 即可求出结

18、果,最后取近似值即可;(2)分别计算参保与不参保时的期望,比较大小即可.【详解】解:(1)由,解得.保险公司每年收取的保费为:要使公司不亏本,则,即解得.(2)若该老人购买了此项保险,则的取值为(元).若该老人没有购买此项保险,则的取值为.(元).年龄为的该老人购买此项保险比较划算.【点睛】本题考查学生利用相关统计图表知识处理实际问题的能力,掌握频率分布直方图的基本性质,知道数学期望是平均数的另一种数学语言,为容易题.18(1),频率分布直方图见解析;(2)分布列见解析,;(3)来自的可能性最大【解析】(1)由频率和为可知,根据求得,从而计算得到频数,补全频率分布表后可画出频率分布直方图;(2

19、)首先确定的所有可能取值,由超几何分布概率公式可计算求得每个取值对应的概率,由此得到分布列;根据数学期望的计算公式可求得期望;(3)根据中不赞成比例最大可知来自的可能性最大.【详解】(1)由频率分布表得:,即收入在的有名,则频率分布直方图如下:(2)收入在中赞成人数为,不赞成人数为,可能取值为,则;,的分布列为:(3)来自的可能性更大【点睛】本题考查概率与统计部分知识的综合应用,涉及到频数、频率的计算、频率分布直方图的绘制、服从于超几何分布的随机变量的分布列与数学期望的求解、统计估计等知识;考查学生的运算和求解能力.19(1)见解析;(2)【解析】(1)X的可能取值为300,500,600,结

20、合题意及表格数据计算对应概率,即得解;(2)由题意得,分,及,分别得到y与n的函数关系式,得到对应的分布列,分析即得解.【详解】(1)由题意:X的可能取值为300,500,600 故:六月份这种酸奶一天的需求量(单位:瓶)的分布列为300500600(2)由题意得.1.当时,利润此时利润的分布列为.2.时,利润此时利润的分布列为.综上的数学期望的取值范围是.【点睛】本题考查了函数与概率统计综合,考查了学生综合分析,数据处理,转化划归,数学运算的能力,属于中档题.20(1)见解析(2)平面.见解析【解析】(1)要证平面,只需证明,即可求得答案;(2)连接交于点,连接,根据已知条件求证,即可判断与

21、平面的位置关系,进而求得答案.【详解】(1),为边的中点,平面平面,平面平面,平面,平面,在内,为所在边的中点,又,平面.(2)判断可知,平面,证明如下:连接交于点,连接.、分别为边、的中点,.又是的重心,平面,平面,平面.【点睛】本题主要考查了求证线面垂直和线面平行,解题关键是掌握线面垂直判定定理和线面平行判断定理,考查了分析能力和空间想象能力,属于中档题.21(1)见解析;(2)【解析】(1)设中点为,连接、,首先通过条件得出,加,可得,进而可得平面,再加上平面,可得平面平面,则平面;(2)设中点为,连接、,可得平面,加上平面,则可如图建立直角坐标系,求出平面的法向量和平面的法向量,利用向

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论