版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目
2、要求的。1已知的展开式中第项与第项的二项式系数相等,则奇数项的二项式系数和为( )ABCD2把函数的图象向右平移个单位,得到函数的图象给出下列四个命题的值域为的一个对称轴是的一个对称中心是存在两条互相垂直的切线其中正确的命题个数是( )A1B2C3D43下列函数中,在定义域上单调递增,且值域为的是( )ABCD4在关于的不等式中,“”是“恒成立”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件5记为数列的前项和数列对任意的满足.若,则当取最小值时,等于( )A6B7C8D96已知函数满足=1,则等于( )A-BC-D7已知是边长为1的等边三角形,点,分别是边,的中点,连
3、接并延长到点,使得,则的值为( )ABCD8已知椭圆的左、右焦点分别为,上顶点为点,延长交椭圆于点,若为等腰三角形,则椭圆的离心率ABCD9已知,则( )ABCD10已知,则的值构成的集合是( )ABCD11若复数满足,则( )ABCD12已知Sn为等比数列an的前n项和,a516,a3a432,则S8( )A21B24C85D85二、填空题:本题共4小题,每小题5分,共20分。13已知实数满足则点构成的区域的面积为_,的最大值为_14已知多项式(x1)3(x2)2x5a1x4a2x3a3x2a4xa5,则a4_,a5_15已知为椭圆上的一个动点,设直线和分别与直线交于,两点,若与的面积相等,
4、则线段的长为_.16若实数x,y满足不等式组x+y-40,2x-3y-80,x1,则目标函数三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知ABC的内角A,B,C的对边分别为a,b,c,若c2a,bsinBasinAasinC()求sinB的值;()求sin(2B+)的值18(12分)已知数列满足:,且对任意的都有,()证明:对任意,都有;()证明:对任意,都有;()证明:.19(12分)设函数(1)当时,求不等式的解集;(2)当时,求实数的取值范围20(12分)已知椭圆的焦距是,点是椭圆上一动点,点是椭圆上关于原点对称的两点(与不同),若直线的斜率之积为.()
5、求椭圆的标准方程;()是抛物线上两点,且处的切线相互垂直,直线与椭圆相交于两点,求的面积的最大值.21(12分)如图,三棱柱中,底面是等边三角形,侧面是矩形,是的中点,是棱上的点,且.(1)证明:平面;(2)若,求二面角的余弦值.22(10分)为了保障全国第四次经济普查顺利进行,国家统计局从东部选择江苏,从中部选择河北、湖北,从西部选择宁夏,从直辖市中选择重庆作为国家综合试点地区,然后再逐级确定普查区域,直到基层的普查小区,在普查过程中首先要进行宣传培训,然后确定对象,最后入户登记,由于种种情况可能会导致入户登记不够顺利,这为正式普查提供了宝贵的试点经验,在某普查小区,共有50家企事业单位,1
6、50家个体经营户,普查情况如下表所示:普查对象类别顺利不顺利合计企事业单位401050个体经营户10050150合计14060200(1)写出选择5个国家综合试点地区采用的抽样方法;(2)根据列联表判断是否有的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关”;(3)以该小区的个体经营户为样本,频率作为概率,从全国个体经营户中随机选择3家作为普查对象,入户登记顺利的对象数记为,写出的分布列,并求的期望值附:0.100.0100.0012.7066.63510.828参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析
7、】因为的展开式中第4项与第8项的二项式系数相等,所以,解得,所以二项式中奇数项的二项式系数和为考点:二项式系数,二项式系数和2C【解析】由图象变换的原则可得,由可求得值域;利用代入检验法判断;对求导,并得到导函数的值域,即可判断.【详解】由题,则向右平移个单位可得, ,的值域为,错误;当时,所以是函数的一条对称轴,正确;当时,所以的一个对称中心是,正确;,则,使得,则在和处的切线互相垂直,正确.即正确,共3个.故选:C【点睛】本题考查三角函数的图像变换,考查代入检验法判断余弦型函数的对称轴和对称中心,考查导函数的几何意义的应用.3B【解析】分别作出各个选项中的函数的图象,根据图象观察可得结果.
8、【详解】对于,图象如下图所示:则函数在定义域上不单调,错误;对于,的图象如下图所示:则在定义域上单调递增,且值域为,正确;对于,的图象如下图所示:则函数单调递增,但值域为,错误;对于,的图象如下图所示:则函数在定义域上不单调,错误.故选:.【点睛】本题考查函数单调性和值域的判断问题,属于基础题.4C【解析】讨论当时,是否恒成立;讨论当恒成立时,是否成立,即可选出正确答案.【详解】解:当时,由开口向上,则恒成立;当恒成立时,若,则 不恒成立,不符合题意,若 时,要使得恒成立,则 ,即 .所以“”是“恒成立”的充要条件.故选:C.【点睛】本题考查了命题的关系,考查了不等式恒成立问题.对于探究两个命
9、题的关系时,一般分成两步,若,则推出 是 的充分条件;若,则推出 是 的必要条件.5A【解析】先令,找出的关系,再令,得到的关系,从而可求出,然后令,可得,得出数列为等差数列,得,可求出取最小值.【详解】解法一:由,所以,由条件可得,对任意的,所以是等差数列,要使最小,由解得,则.解法二:由赋值法易求得,可知当时,取最小值.故选:A【点睛】此题考查的是由数列的递推式求数列的通项,采用了赋值法,属于中档题.6C【解析】设的最小正周期为,可得,则,再根据得,又,则可求出,进而可得.【详解】解:设的最小正周期为,因为,所以,所以,所以,又,所以当时,因为,整理得,因为,则所以.故选:C.【点睛】本题
10、考查三角形函数的周期性和对称性,考查学生分析能力和计算能力,是一道难度较大的题目.7D【解析】设,作为一个基底,表示向量,然后再用数量积公式求解.【详解】设,所以,所以.故选:D【点睛】本题主要考查平面向量的基本运算,还考查了运算求解的能力,属于基础题.8B【解析】设,则,因为,所以若,则,所以,所以,不符合题意,所以,则,所以,所以,设,则,在中,易得,所以,解得(负值舍去),所以椭圆的离心率故选B9D【解析】根据指数函数的单调性,即当底数大于1时单调递增,当底数大于零小于1时单调递减,对选项逐一验证即可得到正确答案.【详解】因为,所以,所以是减函数,又因为,所以,所以,所以A,B两项均错;
11、又,所以,所以C错;对于D,所以,故选D.【点睛】这个题目考查的是应用不等式的性质和指对函数的单调性比较大小,两个式子比较大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性质得到大小关系,有时可以代入一些特殊的数据得到具体值,进而得到大小关系.10C【解析】对分奇数、偶数进行讨论,利用诱导公式化简可得.【详解】为偶数时,;为奇数时,则的值构成的集合为.【点睛】本题考查三角式的化简,诱导公式,分类讨论,属于基本题.11C【解析】化简得到,再计算复数模得到答案.【详解】,故,故,.故选:.【点睛】本题考查了复数的化简,共轭复数,复数模,意在考查学生的计算能力.12D【解析】由等比数列
12、的性质求得a1q416,a12q532,通过解该方程求得它们的值,求首项和公比,根据等比数列的前n项和公式解答即可.【详解】设等比数列an的公比为q,a516,a3a432,a1q416,a12q532,q2,则,则,故选:D.【点睛】本题主要考查等比数列的前n项和,根据等比数列建立条件关系求出公比是解决本题的关键,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。138 11 【解析】画出不等式组表示的平面区域,数形结合求得区域面积以及目标函数的最值.【详解】不等式组表示的平面区域如下图所示:数形结合可知,可行域为三角形,且底边长,高为,故区域面积;令,变为,显然直线过时,z最大,
13、故.故答案为:;11.【点睛】本题考查简单线性规划问题,涉及区域面积的求解,属基础题.1416 4 【解析】只需令x0,易得a5,再由(x1)3(x2)2(x1)52(x1)4(x1)3,可得a42.【详解】令x0,得a5(01)3(02)24,而(x1)3(x2)2(x1)3(x1)22(x1)1(x1)52(x1)4(x1)3;则a4258316.故答案为:16,4.【点睛】本题主要考查了多项式展开中的特定项的求解,可以用赋值法也可以用二项展开的通项公式求解,属于中档题.15【解析】先设点坐标,由三角形面积相等得出两个三角形的边之间的比例关系,这个比例关系又可用线段上点的坐标表示出来,从而
14、可求得点的横坐标,代入椭圆方程得纵坐标,然后可得【详解】如图,设,由,得,由得,解得,又在椭圆上,故答案为:【点睛】本题考查直线与椭圆相交问题,解题时由三角形面积相等得出线段长的比例关系,解题是由把线段长的比例关系用点的横坐标表示1612【解析】画出约束条件的可行域,求出最优解,即可求解目标函数的最大值【详解】根据约束条件画出可行域,如下图,由x+y-4=02x-3y-8=0,解得目标函数y=3x-z,当y=3x-z过点(4,0)时,z有最大值,且最大值为12故答案为:12【点睛】本题考查线性规划的简单应用,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17() ()
15、【解析】()根据条件由正弦定理得,又c2a,所以,由余弦定理算出,进而算出;()由二倍角公式算出,代入两角和的正弦公式计算即可.【详解】() bsinBasinAasinC,所以由正弦定理得,又c2a,所以,由余弦定理得:,又,所以;(),.【点睛】本题主要考查了正余弦定理的应用,运用二倍角公式和两角和的正弦公式求值,考查了学生的运算求解能力.18(1)见解析(2)见解析(3)见解析【解析】分析:(1)用反证法证明,注意应用题中所给的条件,有效利用,再者就是注意应用反证法证题的步骤;(2)将式子进行相应的代换,结合不等式的性质证得结果;(3)结合题中的条件,应用反证法求得结果.详解:证明:()
16、证明:采用反证法,若不成立,则若,则,与任意的都有矛盾;若,则有,则与任意的都有矛盾;故对任意,都有成立; ()由得,则,由()知,即对任意,都有;. ()由()得:, 由()知, ,即,若,则,取时,有,与矛盾.则. 得证.点睛:该题考查的是有关命题的证明问题,在证题的过程中,注意对题中的条件的等价转化,注意对式子的等价变形,以及证题的思路,要掌握证明问题的方法,尤其是反证法的证题思路以及证明步骤.19 (1) (2) 当时,的取值范围为;当时,的取值范围为【解析】(1)当时,分类讨论把不等式化为等价不等式组,即可求解 (2)由绝对值的三角不等式,可得,当且仅当时,取“”,分类讨论,即可求解
17、【详解】(1)当时,不等式可化为或或 ,解得不等式的解集为 (2)由绝对值的三角不等式,可得, 当且仅当时,取“”, 所以当时,的取值范围为;当时,的取值范围为【点睛】本题主要考查了含绝对值的不等式的求解,以及绝对值三角不等式的应用,其中解答中熟记含绝对值不等式的解法,以及合理应用绝对值的三角不等式是解答的关键,着重考查了推理与运算能力,属于基础题20();()【解析】()设点的坐标,表达出直线的斜率之积,再根据三点均在椭圆上,根据椭圆的方程代入斜率之积的表达式列式求解即可.()设直线的方程为,根据直线的斜率之积为可得,再联立直线与椭圆的方程,表达出面积公式,再换元利用基本不等式求解即可.【详
18、解】()设,则,又,故,即,故,又,故.故椭圆的标准方程为.()设直线的方程为,由 ,故,又,故,因为处的切线相互垂直故.故直线的方程为.联立故.故,代入韦达定理有设,则.当且仅当时取等号.故的面积的最大值为.【点睛】本题主要考查了根据椭圆上的点坐标满足的关系式求解椭圆基本量求方程的方法,同时也考查了抛物线的切线问题以及椭圆中面积的最值问题,需要根据导数的几何意义求切线斜率,再换元利用基本不等式求解.属于难题.21(1)见解析(2)【解析】(1)连结BM,推导出BCBB1,AA1BC,从而AA1MC,进而AA1平面BCM,AA1MB,推导出四边形AMNP是平行四边形,从而MNAP,由此能证明MN平面ABC(2)推导出ABA1是等腰直角三角形,设AB,则AA12a,BMAMa,推导出MCBM,MCAA1,BMAA1,以M为坐标原点,MA1,MB,MC为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角ACMN的余弦值【详解】(1)如图1,在三棱柱中,连结,因为是矩形,所以,因为,所以, 又因为,所以平面,所以,又因为,所以是中点,取
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度个人承包户外广告牌安装合同范本3篇
- 二零二五年度房产更名买卖合同绿色环保生活3篇
- 二零二五年度教育培训机构委托合作合同3篇
- 二零二五年度城市更新项目安置房买卖合同2篇
- 二零二五年度化妆品广告创意制作与品牌合作合同3篇
- 海南职业技术学院《中文信息处理技术》2023-2024学年第一学期期末试卷
- 海南外国语职业学院《地质微生物学》2023-2024学年第一学期期末试卷
- 二零二五年度建筑工程二次结构承包与建筑废弃物资源化利用、处理与回收合同3篇
- 2025年度建筑装修用涂料采购及施工一体化合同2篇
- 课程设计技术特性表
- 2024年杭州市中医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 经济职业技术学院教务教学管理制度汇编(2024年)
- 2024-2025学年人教版八年级数学上册期末测试模拟试题(含答案)
- ISO 56001-2024《创新管理体系-要求》专业解读与应用实践指导材料之15:“6策划-6.4创新组合”(雷泽佳编制-2025B0)
- 2025混凝土外加剂买卖合同
- 《环境感知技术》2024年课程标准(含课程思政设计)
- 小学生科普人工智能
- 常用函数图像(1)
- 说明书ZWY-150(120)-45L煤矿用挖掘式装载机
- 《锅炉及锅炉房设备》课程设计北京市某燃煤厂区蒸汽锅炉房设计
- 单位局域网的建设—毕业论文
评论
0/150
提交评论