2021-2022学年河南省安阳市第三十六高考考前模拟数学试题含解析_第1页
2021-2022学年河南省安阳市第三十六高考考前模拟数学试题含解析_第2页
2021-2022学年河南省安阳市第三十六高考考前模拟数学试题含解析_第3页
2021-2022学年河南省安阳市第三十六高考考前模拟数学试题含解析_第4页
2021-2022学年河南省安阳市第三十六高考考前模拟数学试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1抛物线的焦点为,点是上一点,则( )ABCD2中心在原点,对称轴为坐标轴的双曲线的两条渐近线与圆都相切,则双曲线的离心率是( )A2或B2或C或D或3设集合,则( )ABCD4已知,则

2、( )ABCD5大衍数列,米源于我国古代文献乾坤谱中对易传“大衍之数五十”的推论,主要用于解释我国传统文化中的太极衍生原理,数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和.已知该数列前10项是0,2,4,8,12,18,24,32,40,50,则大衍数列中奇数项的通项公式为( )ABCD6的展开式中的系数为( )ABCD7盒子中有编号为1,2,3,4,5,6,7的7个相同的球,从中任取3个编号不同的球,则取的3个球的编号的中位数恰好为5的概率是( )ABCD8已知等式成立,则( )A0B5C7D139算数书竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的

3、数学典籍.其中记载有求“囷盖”的术:“置如其周,令相承也.又以高乘之,三十六成一”.该术相当于给出了由圆锥的底面周长与高,计算其体积的近似公式.它实际上是将圆锥体积公式中的圆周率近似取为3.那么近似公式相当于将圆锥体积公式中的圆周率近似取为( )ABCD10已知a,b是两条不同的直线,是两个不同的平面,且,则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件11方程在区间内的所有解之和等于( )A4B6C8D1012已知双曲线的左右焦点分别为,以线段为直径的圆与双曲线在第二象限的交点为,若直线与圆相切,则双曲线的渐近线方程是( )A BC D二、填空题:本题共4

4、小题,每小题5分,共20分。13在的展开式中,各项系数之和为,则展开式中的常数项为_.14在正方体中,已知点在直线上运动,则下列四个命题中:三棱锥的体积不变;当为中点时,二面角 的余弦值为;若正方体的棱长为2,则的最小值为;其中说法正确的是_(写出所有说法正确的编号)15的展开式中,的系数是_. (用数字填写答案)16某高校开展安全教育活动,安排6名老师到4个班进行讲解,要求1班和2班各安排一名老师,其余两个班各安排两名老师,其中刘老师和王老师不在一起,则不同的安排方案有_种.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设等比数列的前项和为,若()求数列的通项公

5、式;()在和之间插入个实数,使得这个数依次组成公差为的等差数列,设数列的前项和为,求证:.18(12分)近年来,随着“雾霾”天出现的越来越频繁,很多人为了自己的健康,外出时选择戴口罩,在一项对人们雾霾天外出时是否戴口罩的调查中,共调查了人,其中女性人,男性人,并根据统计数据画出等高条形图如图所示:(1)利用图形判断性别与雾霾天外出戴口罩是否有关系并说明理由;(2)根据统计数据建立一个列联表;(3)能否在犯错误的概率不超过的前提下认为性别与雾霾天外出戴口罩的关系.附:19(12分)已知数列,满足.(1)求数列,的通项公式;(2)分别求数列,的前项和,.20(12分)设,.(1)若的最小值为4,求

6、的值;(2)若,证明:或.21(12分)如图,四棱锥中,底面为直角梯形,在锐角中,E是边PD上一点,且.(1)求证:平面ACE;(2)当PA的长为何值时,AC与平面PCD所成的角为?22(10分)已知曲线的极坐标方程为,直线的参数方程为(为参数).(1)求曲线的直角坐标方程与直线的普通方程;(2)已知点,直线与曲线交于、两点,求.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】根据抛物线定义得,即可解得结果.【详解】因为,所以.故选B【点睛】本题考查抛物线定义,考查基本分析求解能力,属基础题.2A【解析】根据题意,由圆的

7、切线求得双曲线的渐近线的方程,再分焦点在x、y轴上两种情况讨论,进而求得双曲线的离心率【详解】设双曲线C的渐近线方程为y=kx,是圆的切线得: ,得双曲线的一条渐近线的方程为 焦点在x、y轴上两种情况讨论:当焦点在x轴上时有: 当焦点在y轴上时有: 求得双曲线的离心率 2或故选:A【点睛】本小题主要考查直线与圆的位置关系、双曲线的简单性质等基础知识,考查运算求解能力,考查数形结合思想解题的关键是:由圆的切线求得直线 的方程,再由双曲线中渐近线的方程的关系建立等式,从而解出双曲线的离心率的值此题易忽视两解得出错误答案3D【解析】根据题意,求出集合A,进而求出集合和,分析选项即可得到答案.【详解】

8、根据题意,则故选:D【点睛】此题考查集合的交并集运算,属于简单题目,4C【解析】利用二倍角公式,和同角三角函数的商数关系式,化简可得,即可求得结果.【详解】,所以,即.故选:C.【点睛】本题考查三角恒等变换中二倍角公式的应用和弦化切化简三角函数,难度较易.5B【解析】直接代入检验,排除其中三个即可【详解】由题意,排除D,排除A,C同时B也满足,故选:B【点睛】本题考查由数列的项选择通项公式,解题时可代入检验,利用排除法求解6C【解析】由题意,根据二项式定理展开式的通项公式,得展开式的通项为,则展开式的通项为,由,得,所以所求的系数为.故选C.点睛:此题主要考查二项式定理的通项公式的应用,以及组

9、合数、整数幂的运算等有关方面的知识与技能,属于中低档题,也是常考知识点.在二项式定理的应用中,注意区分二项式系数与系数,先求出通项公式,再根据所求问题,通过确定未知的次数,求出,将的值代入通项公式进行计算,从而问题可得解.7B【解析】由题意,取的3个球的编号的中位数恰好为5的情况有,所有的情况有种,由古典概型的概率公式即得解.【详解】由题意,取的3个球的编号的中位数恰好为5的情况有,所有的情况有种由古典概型,取的3个球的编号的中位数恰好为5的概率为:故选:B【点睛】本题考查了排列组合在古典概型中的应用,考查了学生综合分析,概念理解,数学运算的能力,属于中档题.8D【解析】根据等式和特征和所求代

10、数式的值的特征用特殊值法进行求解即可.【详解】由可知:令,得;令,得;令,得,得,而,所以.故选:D【点睛】本题考查了二项式定理的应用,考查了特殊值代入法,考查了数学运算能力.9C【解析】将圆锥的体积用两种方式表达,即,解出即可.【详解】设圆锥底面圆的半径为r,则,又,故,所以,.故选:C.【点睛】本题利用古代数学问题考查圆锥体积计算的实际应用,考查学生的运算求解能力、创新能力.10C【解析】根据线面平行的性质定理和判定定理判断与的关系即可得到答案.【详解】若,根据线面平行的性质定理,可得;若,根据线面平行的判定定理,可得.故选:C.【点睛】本题主要考查了线面平行的性质定理和判定定理,属于基础

11、题.11C【解析】画出函数和的图像,和均关于点中心对称,计算得到答案.【详解】,验证知不成立,故,画出函数和的图像,易知:和均关于点中心对称,图像共有8个交点,故所有解之和等于.故选:.【点睛】本题考查了方程解的问题,意在考查学生的计算能力和应用能力,确定函数关于点中心对称是解题的关键.12B【解析】先设直线与圆相切于点,根据题意,得到,再由,根据勾股定理求出,从而可得渐近线方程.【详解】设直线与圆相切于点,因为是以圆的直径为斜边的圆内接三角形,所以,又因为圆与直线的切点为,所以,又,所以,因此,因此有,所以,因此渐近线的方程为.故选B【点睛】本题主要考查双曲线的渐近线方程,熟记双曲线的简单性

12、质即可,属于常考题型.二、填空题:本题共4小题,每小题5分,共20分。13【解析】利用展开式各项系数之和求得的值,由此写出展开式的通项,令指数为零求得参数的值,代入通项计算即可得解.【详解】的展开式各项系数和为,得,所以,的展开式通项为,令,得,因此,展开式中的常数项为.故答案为:.【点睛】本题考查二项展开式中常数项的计算,涉及二项展开式中各项系数和的计算,考查计算能力,属于基础题.14【解析】,平面,得出上任意一点到平面的距离相等,所以判断命题;由已知得出点P在面上的射影在上,根据线面垂直的判定和性质或三垂线定理,可判断命题;当为中点时,以点D为坐标原点,建立空间直角系,如下图所示,运用二面

13、角的空间向量求解方法可求得二面角的余弦值,可判断命题;过作平面交于点,做点关于面对称的点,使得点在平面内,根据对称性和两点之间线段最短,可求得当点在点时,在一条直线上,取得最小值.可判断命题.【详解】,平面,所以上任意一点到平面的距离相等,所以三棱锥的体积不变,所以正确;在直线上运动时,点P在面上的射影在上,所以DP在面上的射影在上,又,所以,所以正确;当为中点时,以点D为坐标原点,建立空间直角系,如下图所示,设正方体的棱长为2.则:,所以,设面的法向量为,则,即,令,则,设面的法向量为, ,即, ,由图示可知,二面角 是锐二面角,所以二面角的余弦值为,所以不正确;过作平面交于点,做点关于面对

14、称的点,使得点在平面内,则,所以,当点在点时,在一条直线上,取得最小值. 因为正方体的棱长为2,所以设点的坐标为,所以,所以,又所以,所以,故正确.故答案为:.【点睛】本题考查空间里的线线,线面,面面关系,几何体的体积,在求解空间里的两线段的和的最小值,仍可以运用对称的思想,两点之间线段最短进行求解,属于难度题.15【解析】根据组合的知识,结合组合数的公式,可得结果.【详解】由题可知:项来源可以是:(1)取1个,4个(2)取2个,3个的系数为:故答案为:【点睛】本题主要考查组合的知识,熟悉二项式定理展开式中每一项的来源,实质上每个因式中各取一项的乘积,转化为组合的知识,属中档题.16156【解

15、析】先考虑每班安排的老师人数,然后计算出对应的方案数,再考虑刘老师和王老师在同一班级的方案数,两者作差即可得到不同安排的方案数.【详解】安排6名老师到4个班则每班老师人数为1,1,2,2,共有种,刘老师和王老师分配到一个班,共有种,所以种.故答案为:.【点睛】本题考查排列组合的综合应用,难度一般.对于分组的问题,首先确定每组的数量,对于其中特殊元素,可通过 “正难则反”的思想进行分析.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17();()详见解析.【解析】(),两式相减化简整理利用等比数列的通项公式即可得出()由题设可得,可得,利用错位相减法即可得出【详解】解:()因为,

16、故,两式相减可得,故,因为是等比数列,又,所以,故,所以;()由题设可得,所以,所以,则,得:,所以,得证.【点睛】本题考查了数列递推关系、等比数列的通项公式求和公式、错位相减法,考查了推理能力与计算能力,属于中档题18(1)图形见解析,理由见解析;(2)见解析;(3)犯错误的概率不超过的前提下认为性别与雾霾天外出戴口罩有关系【解析】(1)利用等高条形图中两个深颜色条的高比较得出性别与雾霾天外出戴口罩有关系;(2)填写列联表即可;(3)由表中数据,计算观测值,对照临界值得出结论【详解】解:(1)在等高条形图中,两个深色条的高分别表示女性和男性中雾霾天外出戴口罩的频率,比较图中两个深色条的高可以

17、发现,女性中雾霾天外出带口罩的频率明显高于男性中雾霾天外出带口罩的频率,因此可以认为性别与雾霾天外出带口罩有关系.(2)列联表如下:戴口罩不戴口罩合计女性男性合计(3)由(2)中数据可得:.所以,在犯错误的概率不超过的前提下认为性别与雾霾天外出戴口罩有关系.【点睛】本题考查了列联表与独立性检验的应用问题,也考查了登高条形图的应用问题,属于基础题19(1)(2);【解析】(1),可得为公比为2的等比数列,可得为公差为1的等差数列,再算出,的通项公式,解方程组即可;(2)利用分组求和法解决.【详解】(1)依题意有又.可得数列为公比为2的等比数列,为公差为1的等差数列,由,得解得故数列,的通项公式分

18、别为.(2),.【点睛】本题考查利用递推公式求数列的通项公式以及分组求和法求数列的前n项和,考查学生的计算能力,是一道中档题.20(1)2;(2)见解析【解析】(1)将化简为,再利用基本不等式即可求出最小值为4,便可得出的值;(2)根据,即,得出,利用基本不等式求出最值,便可得出的取值范围.【详解】解:(1)由题可知,.(2),即:或.【点睛】本题考查基本不等式的应用,利用基本不等式和放缩法求最值,考查化简计算能力.21(1)证明见解析;(2)当时,AC与平面PCD所成的角为.【解析】(1)连接交于,由相似三角形可得,结合得出,故而平面;(2)过作,可证平面,根据计算,得出的大小,再计算的长【详解】(1)证明:连接BD交AC于点O,连接OE,又平面ACE,平面ACE,平面ACE.(2),平面PAD作,F为垂足,连接CF平面PAD,平面PAD.,有,平面就是AC与平面PCD所成的角,时,AC与平面PCD所成的角为.【点睛】本题考查了线面平行的判定,线面垂直的判定与线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论