版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知三棱锥的外接球半径为2,且球心为线段的中点,则三棱锥的体积的最大值为( )ABCD2羽毛球混合双打比赛每队由一
2、男一女两名运动员组成. 某班级从名男生,和名女生,中各随机选出两名,把选出的人随机分成两队进行羽毛球混合双打比赛,则和两人组成一队参加比赛的概率为( )ABCD3在中,已知,为线段上的一点,且,则的最小值为( )ABCD4 “纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样.为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为3的正方形将其包含在内,并向该正方形内随机投掷200个点,己知恰有80个点落在阴影部分据此可估计阴影部分的面积是( )ABC10D5已知函数,对任意的,当时,则下列判断正确的是( )AB函数在上递增C函数的一条对称轴是D函数的一个对称中心是6定义在R上的函数
3、满足,为的导函数,已知的图象如图所示,若两个正数满足,的取值范围是( )ABCD7在中,则=( )ABCD8已知函数,若,对任意恒有,在区间上有且只有一个使,则的最大值为( )ABCD9南宋数学家杨辉在详解九章算法和算法通变本末中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )(注:)A1624B1024C1198D156010已知函数,若曲线上始终存在两点,使得,且的中
4、点在轴上,则正实数的取值范围为( )ABCD11设全集,集合,.则集合等于( )ABCD12已知定点都在平面内,定点是内异于的动点,且,那么动点在平面内的轨迹是( )A圆,但要去掉两个点B椭圆,但要去掉两个点C双曲线,但要去掉两个点D抛物线,但要去掉两个点二、填空题:本题共4小题,每小题5分,共20分。13四边形中,则的最小值是_.14设函数,则_.15如图,在三棱锥中,平面,已知,则当最大时,三棱锥的体积为_16设直线过双曲线的一个焦点,且与的一条对称轴垂直,与交于两点,为的实轴长的2倍,则双曲线的离心率为 .三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在AB
5、C中,角A,B,C的对边分别为a,b,c,已知,()求的大小;()若,求面积的最大值18(12分)已知圆外有一点,过点作直线(1)当直线与圆相切时,求直线的方程;(2)当直线的倾斜角为时,求直线被圆所截得的弦长19(12分)在平面直角坐标系xOy中,已知平行于x轴的动直线l交抛物线C:于点P,点F为C的焦点圆心不在y轴上的圆M与直线l,PF,x轴都相切,设M的轨迹为曲线E(1)求曲线E的方程;(2)若直线与曲线E相切于点,过Q且垂直于的直线为,直线,分别与y轴相交于点A,当线段AB的长度最小时,求s的值20(12分)某企业原有甲、乙两条生产线,为了分析两条生产线的效果,先从两条生产线生产的大量
6、产品中各抽取了100件产品作为样本,检测一项质量指标值该项指标值落在内的产品视为合格品,否则为不合格品乙生产线样本的频数分布表质量指标合计频数2184814162100(1)根据甲生产线样本的频率分布直方图,以从样本中任意抽取一件产品且为合格品的频率近似代替从甲生产线生产的产品中任意抽取一件产品且为合格品的概率,估计从甲生产线生产的产品中任取5件恰有2件为合格品的概率;(2)现在该企业为提高合格率欲只保留其中一条生产线,根据上述图表所提供的数据,完成下面的列联表,并判断是否有90%把握认为该企业生产的这种产品的质量指标值与生产线有关?若有90%把握,请从合格率的角度分析保留哪条生产线较好?甲生
7、产线乙生产线合计合格品不合格品合计附:,0.1500.1000.0500.0250.0100.0052.0722.7063.8415.0246.6357.87921(12分)已知椭圆:,不与坐标轴垂直的直线与椭圆交于,两点.()若线段的中点坐标为,求直线的方程;()若直线过点,点满足(,分别为直线,的斜率),求的值.22(10分)如图,在直角中,通过以直线为轴顺时针旋转得到().点为斜边上一点.点为线段上一点,且.(1)证明:平面;(2)当直线与平面所成的角取最大值时,求二面角的正弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的
8、。1C【解析】由题可推断出和都是直角三角形,设球心为,要使三棱锥的体积最大,则需满足,结合几何关系和图形即可求解【详解】先画出图形,由球心到各点距离相等可得,故是直角三角形,设,则有,又,所以,当且仅当时,取最大值4,要使三棱锥体积最大,则需使高,此时,故选:C【点睛】本题考查由三棱锥外接球半径,半径与球心位置求解锥体体积最值问题,属于基础题2B【解析】根据组合知识,计算出选出的人分成两队混合双打的总数为,然后计算和分在一组的数目为,最后简单计算,可得结果.【详解】由题可知:分别从3名男生、3名女生中选2人 :将选中2名女生平均分为两组:将选中2名男生平均分为两组:则选出的人分成两队混合双打的
9、总数为:和分在一组的数目为所以所求的概率为故选:B【点睛】本题考查排列组合的综合应用,对平均分组的问题要掌握公式,比如:平均分成组,则要除以,即,审清题意,细心计算,考验分析能力,属中档题.3A【解析】在中,设,结合三角形的内角和及和角的正弦公式化简可求,可得,再由已知条件求得,考虑建立以所在的直线为轴,以所在的直线为轴建立直角坐标系,根据已知条件结合向量的坐标运算求得,然后利用基本不等式可求得的最小值.【详解】在中,设,即,即,即,又,则,所以,解得,.以所在的直线为轴,以所在的直线为轴建立如下图所示的平面直角坐标系,则、,为线段上的一点,则存在实数使得,设,则,消去得,所以,当且仅当时,等
10、号成立,因此,的最小值为.故选:A.【点睛】本题是一道构思非常巧妙的试题,综合考查了三角形的内角和定理、两角和的正弦公式及基本不等式求解最值问题,解题的关键是理解是一个单位向量,从而可用、表示,建立、与参数的关系,解决本题的第二个关键点在于由,发现为定值,从而考虑利用基本不等式求解最小值,考查计算能力,属于难题.4D【解析】直接根据几何概型公式计算得到答案.【详解】根据几何概型:,故.故选:.【点睛】本题考查了根据几何概型求面积,意在考查学生的计算能力和应用能力.5D【解析】利用辅助角公式将正弦函数化简,然后通过题目已知条件求出函数的周期,从而得到,即可求出解析式,然后利用函数的性质即可判断.
11、【详解】,又,即,有且仅有满足条件;又,则,函数, 对于A,故A错误;对于B,由,解得,故B错误;对于C,当时,故C错误; 对于D,由,故D正确.故选:D【点睛】本题考查了简单三角恒等变换以及三角函数的性质,熟记性质是解题的关键,属于基础题.6C【解析】先从函数单调性判断的取值范围,再通过题中所给的是正数这一条件和常用不等式方法来确定的取值范围.【详解】由的图象知函数在区间单调递增,而,故由可知.故,又有,综上得的取值范围是.故选:C【点睛】本题考查了函数单调性和不等式的基础知识,属于中档题.7B【解析】在上分别取点,使得,可知为平行四边形,从而可得到,即可得到答案【详解】如下图,在上分别取点
12、,使得,则为平行四边形,故,故答案为B. 【点睛】本题考查了平面向量的线性运算,考查了学生逻辑推理能力,属于基础题8C【解析】根据的零点和最值点列方程组,求得的表达式(用表示),根据在上有且只有一个最大值,求得的取值范围,求得对应的取值范围,由为整数对的取值进行验证,由此求得的最大值.【详解】由题意知,则其中,又在上有且只有一个最大值,所以,得,即,所以,又,因此当时,此时取可使成立,当时,所以当或时,都成立,舍去;当时,此时取可使成立,当时,所以当或时,都成立,舍去;当时,此时取可使成立,当时,所以当时,成立;综上所得的最大值为故选:C【点睛】本小题主要考查三角函数的零点和最值,考查三角函数
13、的性质,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题.9B【解析】根据高阶等差数列的定义,求得等差数列的通项公式和前项和,利用累加法求得数列的通项公式,进而求得.【详解】依题意:1,4,8,14,23,36,54,两两作差得:3,4,6,9,13,18,两两作差得:1,2,3,4,5,设该数列为,令,设的前项和为,又令,设的前项和为.易,进而得,所以,则,所以,所以.故选:B【点睛】本小题主要考查新定义数列的理解和运用,考查累加法求数列的通项公式,考查化归与转化的数学思想方法,属于中档题.10D【解析】根据中点在轴上,设出两点的坐标,().对分成三类,利用则,列方程,化
14、简后求得,利用导数求得的值域,由此求得的取值范围.【详解】根据条件可知,两点的横坐标互为相反数,不妨设,(),若,则,由,所以,即,方程无解;若,显然不满足;若,则,由,即,即,因为,所以函数在上递减,在上递增,故在处取得极小值也即是最小值,所以函数在上的值域为,故.故选D.【点睛】本小题主要考查平面平面向量数量积为零的坐标表示,考查化归与转化的数学思想方法,考查利用导数研究函数的最小值,考查分析与运算能力,属于较难的题目.11A【解析】先算出集合,再与集合B求交集即可.【详解】因为或.所以,又因为.所以.故选:A.【点睛】本题考查集合间的基本运算,涉及到解一元二次不等式、指数不等式,是一道容
15、易题.12A【解析】根据题意可得,即知C在以AB为直径的圆上.【详解】,,,又,,平面,又平面,故在以为直径的圆上,又是内异于的动点,所以的轨迹是圆,但要去掉两个点A,B故选:A【点睛】本题主要考查了线面垂直、线线垂直的判定,圆的性质,轨迹问题,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】在中利用正弦定理得出,进而可知,当时,取最小值,进而计算出结果.【详解】,如图,在中,由正弦定理可得,即,故当时,取到最小值为.故答案为:.【点睛】本题考查解三角形,同时也考查了常见的三角函数值,考查逻辑推理能力与计算能力,属于中档题14【解析】由自变量所在定义域范围,代入对应解析
16、式,再由对数加减法运算法则与对数恒等式关系分别求值再相加,即为答案.【详解】因为函数,则因为,则故故答案为:【点睛】本题考查分段函数求值,属于简单题.154【解析】设,则,当且仅当,即时,等号成立.,故答案为416【解析】不妨设双曲线,焦点,令,由的长为实轴的二倍能够推导出的离心率.【详解】不妨设双曲线,焦点,对称轴,由题设知,因为的长为实轴的二倍, ,故答案为.【点睛】本题主要考查利用双曲线的简单性质求双曲线的离心率,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,
17、挖掘出它们之间的内在联系.求离心率问题应先将 用有关的一些量表示出来,再利用其中的一些关系构造出关于的等式,从而求出的值.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)(2)【解析】分析:(1)利用正弦定理以及诱导公式与和角公式,结合特殊角的三角函数值,求得角C;(2)运用向量的平方就是向量模的平方,以及向量数量积的定义,结合基本不等式,求得的最大值,再由三角形的面积公式计算即可得到所求的值.详解:(1), ()取中点,则,在中,(注:也可将两边平方)即, ,所以,当且仅当时取等号 此时,其最大值为.点睛:该题考查的是有关三角形的问题,涉及到的知识点有正弦定理,诱导公
18、式,和角公式,向量的平方即为向量模的平方,基本不等式,三角形的面积公式,在解题的过程中,需要正确使用相关的公式进行运算即可求得结果.18(1)或(2)【解析】(1)根据题意分斜率不存在和斜率存在两种情况即可求得结果;(2)先求出直线方程,然后求得圆心与直线的距离,由弦长公式即可得出答案.【详解】解: (1)由题意可得,直线与圆相切当斜率不存在时,直线的方程为,满足题意当斜率存在时,设直线的方程为,即,解得直线的方程为直线的方程为或(2)当直线的倾斜角为时,直线的方程为圆心到直线的距离为弦长为【点睛】本题考查了直线的方程、直线与圆的位置关系、点到直线的距离公式及弦长公式,培养了学生分析问题与解决
19、问题的能力.19(1),(2)【解析】根据题意设,可得PF的方程,根据距离即可求出;点Q处的切线的斜率存在,由对称性不妨设,根据导数的几何意义和斜率公式,求,并构造函数,利用导数求出函数的最值【详解】因为抛物线C的方程为,所以F的坐标为,设,因为圆M与x轴、直线l都相切,l平行于x轴,所以圆M的半径为,点,则直线PF的方程为,即,所以,又m,所以,即,所以E的方程为,设,由知,点Q处的切线的斜率存在,由对称性不妨设,由,所以,所以,所以,令,则,由得,由得,所以在区间单调递减,在单调递增,所以当时,取得极小值也是最小值,即AB取得最小值此时【点睛】本题考查了直线和抛物线的位置关系,以及利用导数
20、求函数最值的关系,考查了运算能力和转化能力,属于难题20(1)0.0081(2)见解析,保留乙生产线较好【解析】(1)先求出任取一件产品为合格品的频率,“从甲生产线生产的产品中任取5件,恰有2件为合格品”就相当于进行5次独立重复试验,恰好发生2次的概率用二项分布概率即可解决.(2)独立性检验算出的观测值即可判断.【详解】(1)根据甲生产线样本的频率分布直方图,样本中任取一件产品为合格品的频率为:设“从甲生产线生产的产品中任取一件且为合格品”为事件,事件发生的概率为,则由样本可估计那么“从甲生产线生产的产品中任取5件,恰有2件为合格品”就相当于进行5次独立重复试验,事件恰好发生2次,其概率为:(2)列联表:甲生产线乙生产线合计合格品9096186不合格品10414合计100100200的观测值,有90%把握认为该企业生产的这
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 劳务分包合同在建筑行业的应用
- 初中体育 健美操提高班第2次课教案
- 2024年二年级品生下册《机智勇敢保安全》教案 山东版
- 2024年学年八年级语文上册 第四单元 地球我们的家园 第15课《大树和我们的生活》教案2 沪教版五四制
- 2023三年级数学上册 七 庆元旦-时、分、秒的认识 信息窗2 有关时间的计算第1课时教案 青岛版六三制
- 2024-2025学年八年级语文下册 第六单元 22《礼记》二则教案 新人教版
- 2024-2025学年高中数学 第三章 函数的概念与性质 3.2.2 奇偶性教案 新人教A版必修第一册
- 最高额保证合同(2篇)
- 租船合同模版(2篇)
- 运输项目合同(2篇)
- 水利部水利建设经济定额站
- 大班数学《贪心的三角形》课件
- 金属和半导体材料电导(材料物理性能)
- 最新八年级道法上册概括与评论题角度汇编
- 基因与健康PPT通用课件
- 酒店组织架构图以及各岗位职责(完整版)
- 环境地质学试题库(共45页)
- 新吨公里计算
- 某热力管道工程施工组织设计方案
- 重庆12.23特大井喷案例
- 外墙面砖脱落维修施工方案完整
评论
0/150
提交评论