




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 山东高考数学知识点总结 现在是进行一轮复习的时候,那么数学学问点有哪些?下面由我为整理有关山东高考数学学问点的资料,感爱好的伴侣们来看一下吧! 山东高考数学学问点:算术平均数与几何平均数定理 (1)假如a、bR,那么a2 + b2 2ab(当且仅当a=b时等号) (2)假如a、bR+,那么(当且仅当a=b时等号)推广: 假如为实数,则重要结论 (1)假如积xy是定值P,那么当x=y时,和x+y有最小值2; (2)假如和x+y是定值S,那么当x=y时,和xy有最大值S2/4。 数学学问点3.证明不等式的常用(方法): 比较法:比较法是最基本、最重要的方法。 当不等式的两边的差能分解因式或能配成
2、平方和的形式,则选择作差比较法;当不等式的两边都是正数且它们的商能与1比较大小, 则选择作商比较法;遇到肯定值或根式,我们还可以考虑作平方差。 综合法:从已知或已证明过的不等式动身,依据不等式的性质推导出欲证的不等式。综合法的放缩常常用到均值不等式。 分析法:不等式两边的联系不够清晰,通过查找不等式成立的充分条件,逐步将欲证的不等式转化,直到查找到易证或已知成立的结论。 山东高考数学学问点:函数部分 1. 函数的奇偶性 (1)若f(x)是偶函数,那么f(x)=f(-x) ; (2)若f(x)是奇函数,0在其定义域内,则 f(0)=0(可用于求参数); (3)推断函数奇偶性可用定义的等价形式:f
3、(x)f(-x)=0或 (f(x)0); (4)若所给函数的解析式较为简单,应先化简,再推断其奇偶性; (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性; 2. 复合函数的有关问题 (1)复合函数定义域求法:若已知 的定义域为a,b,其复合函数fg(x)的定义域由不等式ag(x)b解出即可;若已知fg(x)的定义域为a,b,求 f(x)的定义域,相当于xa,b时,求g(x)的值域(即 f(x)的定义域);讨论函数的问题肯定要留意定义域优先的原则。 (2)复合函数的单调性由“同增异减”判定; 3.函数图像(或方程曲线的对称性) (1)证明函数图像的对称性,即证
4、明图像上任意点关于对称中心(对称轴)的对称点仍在图像上; (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然; (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0); (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0; (5)若函数y=f(x)对xR时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称; (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称; 4.函
5、数的周期性 (1)y=f(x)对xR时,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a0)恒成立,则y=f(x)是周期为2a的周期函数; (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2a的周期函数; (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4a的周期函数; (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数; (5)y=f(x)的图象关于直线x=a,x=b(ab)对称,则函数y=f(x)是周期为2 的周期函数; (6)y=f(x)对xR时,f(x+a)=-f(x)(或f(x+
6、a)= ,则y=f(x)是周期为2 的周期函数; 5.方程k=f(x)有解 kD(D为f(x)的值域); 山东高考数学学问点:映射、函数、反函数 1、对应、映射、函数三个概念既有共性又有区分,映射是一种特别的对应,而函数又是一种特别的映射. 2、对于函数的概念,应留意如下几点: (1)把握构成函数的三要素,会推断两个函数是否为同一函数. (2)把握三种表示法列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特殊是会求分段函数的解析式. (3)假如y=f(u),u=g(x),那么y=fg(x)叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数. 3、求函数y=f(x)的反函数的一般步骤: (1)确定原函数的值域,也就是反函数的定义域; (2)由y=f(x)的解析式求出x=f-1(y); (3)将x,y对换,得反函数的习惯表达式y=f-1(x),并注明定义域. 留意:对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起. 熟识的应用,求f-1(x0)的值,合理利用这个结论,可以避开求反函数的过程,从而简化运算. 山东高考数学学问点(总结)相关(文章): 1.山东数学高考学问点 2.高考数学学问点归纳总结 3.高考数学学问点总结归纳
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人主材合同范本
- 医院规范用工合同范本
- 与物业签订广告合同范本
- 浠水购房合同范本
- 银行居间付款合同范本
- 修建乡村公路合同范本
- 医院日常装饰维修合同范本
- 协调服务合同范本
- 公房买给个人合同范本
- 上海吊车租用合同范本
- 2024年江苏农牧科技职业学院单招职业适应性测试题库及参考答案
- 患者转运意外应急预案
- 大学生国防教育教案第四章现代战争
- 人教版初中化学实验目录(总表)
- AS9100航空航天质量管理体系-要求培训教材
- 第2课+古代希腊罗马【中职专用】《世界历史》(高教版2023基础模块)
- Q-GDW 11711-2017 电网运行风险预警管控工作规范
- 《桃树下的小白兔》课件
- 电工仪表与测量(第六版)中职技工电工类专业全套教学课件
- 强调句(完整版)-高三英语市公开课一等奖省赛课获奖课件
- 2022年4月自考00277行政管理学试题及答案含解析
评论
0/150
提交评论