下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、等边三角形(一)教学目标 (一)教学知识点 经历探索等腰三角形成为等边三角形的条件及其推理证明过程 (二)能力训练要求 1.经历运用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维 2.经历观察、实验、猜想、证明的数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点 (三)情感与价值观要求 1.积极参与数学学习活动,对数学有好奇心和求知欲 2.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心教学重点 等边三角形性质及判定的发现与证明教学难点1.等边三角形性质及判定的发现与证明 2.引导学生全面、周到地思考问题教学方法 探索发现法
2、教学过程 .提出问题,创设情境 军情紧急 (演示课件) 1把等腰三角形的性质用到等边三角形,能得到什么结论? 2一个三角形满足什么条件就是等边三角形? 3你认为有一个角等于60的等腰三角形是等边三角形吗?你能证明你的结论吗?把你的证明思路与同伴交流 (教师应给学生自主探索、思考的时间) 生甲由等边对等角的性质可知,等边三角形的三个角相等,又由三角形三内角和定理可知,等边三角形的三个角相等,并且都等于60 生乙等腰三角形已有两边分别相等,所以我认为只要腰和底边相等,等腰三角形就是等边三角形了 生丙等边三角形的三个内角都相等,且分别都等于60,我认为等腰三角形的三个内角都等于60,也就是说这个等腰
3、三角形就是等边三角形了 (此时,部分同学同意此生看法,部分同学不同意此生看法,引起激烈的争论,教师可让同学代表发表自己的看法) 生丁我不同意这个同学的看法,因为任何一个三角形满足这个条件都是等边三角形根据等角对等边,三个内角都是60,所以它们所对的边一定相等,但这一问题中“已知是等腰三角形,满足什么条件时便是等边三角形”,我觉得他给的条件太多,浪费! 师给三个角都是60,这个条件确实有点浪费,那么给什么条件不浪费呢?下面同学们可以在小组内交流自己的看法 导入新课 探索等腰三角形成等边三角形的条件 生如果等腰三角形的顶角是60,那么这个三角形是等边三角形 师你能给大家陈述一下理由吗? 生根据三角
4、形的内角和定理,顶角是60,等腰三角形的两个底角的和就是180-60=120,再根据等腰三角形两个底角是相等的,所以每个底角分别是1202=60,则三个内角分别相等,根据等角对等边,则此时等腰三角形的三条边是相等的,即顶角为60的等腰三角形为等边三角形 生等腰三角形的底角是60,那么这个三角形也是等边三角形,同样根据三角形内角和定理和等角对等边、等边对等角的性质 师从同学们自主探索和讨论的结果可以发现:在等腰三角形中,不论底角是60,还是顶角是60,那么这个等腰三角形都是等边三角形你能用更简洁的语言描述这个结论吗? 生有一个角是60的等腰三角形是等边三角形 (这个结论的证明对学生来说可能有一定
5、的难点,难点是意识到分别讨论60的角是底角和顶角两种情况这是一种分类讨论的思想,教师要关注学生得出证明思路的过程,引导学生全面、周到地思考问题,并有意识地向学生渗透分类的思想方法) 师你在与同伴的交流过程中,发现了什么或受到了何种启示? 生我发现我的证明过程没有意识到“有一个角是60”,在等腰三角形中有两种情况:(1)这个角是底角;(2)这个角是顶角也就是说我们思考问题要全面、周到 师我们来看有多少同学意识到分别讨论60的角是底角和顶角的情况,我们鼓掌表示对他们的鼓励 今天,我们探索、发现并证明了等边三角形的性质及判定定理;有一个角等于60的等腰三角形是等边三角形,我们在证明这个定理的过程中,
6、还得出了三角形为等边三角形的条件,是什么呢? 生三个角都相等的三角形是等边三角形 师下面就请同学们来证明这个结论 (投影演示学生证明过程) 师这样,我们由等腰三角形的性质和判定方法就可以得到 (演示课件) 等边三角形的三个内角都相等,并且每一个角都等于60; 三个角都相等的三角形是等边三角形 有一个角是60的等腰三角形是等边三角形 师有了上述结论,我们来学习下面的例题,体会上述定理 如图, ABC是等边三角形, DE求证:ADE是等边三角形. 随堂练习 如图,ABC和ADE都是等边三角形,D,E两点分别在边AB和AC 上. 试着处理下面的问题:(1)判断DE和BC的位置关系.(2)证明:BD=CE.(3)若ABC的周长为18cm,EC=2cm,求ADE的周长. 课时小结 这节课,我们自主探索、思考了等腰三角形成为等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 购销合同签订指南与常见问题
- 超市食品质量承诺函模板
- 车辆安全保证书示例样本
- 运动员遵守纪律保证
- 迟到承诺保证书模板
- 酒店食材供应协议案例
- 酒驾危害大签名保平安
- 钢筋工程分包合同守则
- 钢筋采购合同范本
- 铁矿粉购买合同
- 班组长安全培训资料
- Unit1 lesson 1 Me and my body说课稿2024-2025学年冀教版(2024)初中英语七年级上册
- 2024-2030年中国冶炼钛产业未来发展趋势及投资策略分析报告
- 作文写清楚一件事的起因经过和结果公开课获奖课件省赛课一等奖课件
- 线上主播管理劳动合同(3篇)
- 《中秋节》完整教学课件
- 2024年广东深圳市龙华区招聘非编人员98人管理单位遴选500模拟题附带答案详解
- 质子交换膜燃料电池汽车用氢气中颗粒物的测定-称重法-编制说明
- 屋顶维修行业市场调研分析报告
- 小孩进入厂区安全免责协议书(2篇)
- 2024-2030年青海省旅游行业市场发展分析及发展趋势与投资前景研究报告
评论
0/150
提交评论