![高二数学模拟大考的知识点_第1页](http://file4.renrendoc.com/view/97bef5ead5c2669ddc97e726b4febdd0/97bef5ead5c2669ddc97e726b4febdd01.gif)
![高二数学模拟大考的知识点_第2页](http://file4.renrendoc.com/view/97bef5ead5c2669ddc97e726b4febdd0/97bef5ead5c2669ddc97e726b4febdd02.gif)
![高二数学模拟大考的知识点_第3页](http://file4.renrendoc.com/view/97bef5ead5c2669ddc97e726b4febdd0/97bef5ead5c2669ddc97e726b4febdd03.gif)
![高二数学模拟大考的知识点_第4页](http://file4.renrendoc.com/view/97bef5ead5c2669ddc97e726b4febdd0/97bef5ead5c2669ddc97e726b4febdd04.gif)
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 高二数学模拟大考的知识点 高二是高中三年中最关键的一年,在开学之初盼望同学们快速适应新的环境,提升学习和精神两个状态,养成良好的学习和生活习惯。以下是我给大家整理的(高二数学)模拟大考的学问点,盼望能助你一臂之力! 高二数学模拟大考的学问点1 直线、平面、简洁几何体: 1、学会三视图的分析: 2、斜二测画法应留意的地方: (1)在已知图形中取相互垂直的轴Ox、Oy。画直观图时,把它画成对应轴ox、oy、使xoy=45(或135); (2)平行于x轴的线段长不变,平行于y轴的线段长减半. (3)直观图中的45度原图中就是90度,直观图中的90度原图肯定不是90度. 3、表(侧)面积与体积公式:
2、 柱体:表面积:S=S侧+2S底;侧面积:S侧=;体积:V=S底h 锥体:表面积:S=S侧+S底;侧面积:S侧=;体积:V=S底h: 台体表面积:S=S侧+S上底S下底侧面积:S侧= 球体:表面积:S=;体积:V= 4、位置关系的证明(主要(方法)):留意立体几何证明的书写 (1)直线与平面平行:线线平行线面平行;面面平行线面平行。 (2)平面与平面平行:线面平行面面平行。 (3)垂直问题:线线垂直线面垂直面面垂直。核心是线面垂直:垂直平面内的两条相交直线 5、求角:(步骤.找或作角;.求角) 异面直线所成角的求法:平移法:平移直线,构造三角形; 直线与平面所成的角:直线与射影所成的角 高二数
3、学模拟大考的学问点2 形如y=k/x(k为常数且k0)的函数,叫做反比例函数。 自变量x的取值范围是不等于0的一切实数。 反比例函数图像性质: 反比例函数的图像为双曲线。 由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。 另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为k。 如图,上面给出了k分别为正和负(2和-2)时的函数图像。 当K0时,反比例函数图像经过一,三象限,是减函数 当K0时,反比例函数图像经过二,四象限,是增函数 反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。 学问
4、点: 1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。 2.对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(xm)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移) 高二数学模拟大考的学问点3 导数是微积分中的重要基础概念。当函数=f(x)的自变量x在一点x0上产生一个增量x时,函数输出值的增量与自变量增量x的比值在x趋于0时的极限a假如存在,a即为在x0处的导数,记作f(x0)或df(x0)/dx。 导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点四周的变化率。假如函
5、数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性靠近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 不是全部的函数都有导数,一个函数也不肯定在全部的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不行导。然而,可导的函数肯定连续;不连续的函数肯定不行导。 对于可导的函数f(x),xf(x)也是一个函数,称作f(x)的导函数。查找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明白求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。 设函数=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量x,(x0+x)也在该邻域内时,相应地函数取得增量=f(x0+x)-f(x0);假如与x之比当x0时极限存在,则称函数=f(x)在点x0处可导,并称这个极限为函数=f(x)在点x0处的导数记为f(x0),也记作x=x0或d/dxx=x0 高二数学模拟大考的学问点相关(文章): 高二数学考试必考学问点 高二数学考
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 木工装修合同
- 保健按摩店装修合同监管费
- 水利行业水资源管理与水生态修复方案
- 专利代理合同书年
- 三农村社会组织创新发展方案
- 留学服务合同
- 品牌营销策略及市场分析作业指导书
- 数字化工厂设计与实施作业指导书
- 旅游景点智能化管理系统的设计与实施计划书
- 三农地区基础设施建设规划方案
- 《中国香文化》课件
- 演出经纪人培训
- 盖房四邻签字协议书范文
- 2024年新人教版七年级上册数学教学课件 第六章 几何图形初步 数学活动
- 《新时代大学生劳动教育》全套教学课件
- 2024简易租房合同下载打印
- 码头工程施工组织设计
- TBSES 001-2024 建设项目环境影响后评价技术指南 污染影响类
- 北师大版数学三年级下册《分橘子》说课稿及反思(共二篇)
- 新能源汽车:电动压缩机技术简介
- 2024年医美项目立项申请报告范文
评论
0/150
提交评论