下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年山东省烟台市龙口东江镇东江中学高一数学文测试题含解析一、 选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知集合Ax|x3,Bx|(x2)(x4)0,则AB()Ax|x2 Bx|3x4参考答案:B2. 已知,且 则的值为( ) A4 B0 C2m D参考答案:A略3. 设,且,则m=( )A B C.或 D10参考答案:A由题意可得,由等式()两边取对数,可得,所以可得,选A.4. 已知函数f(2x1)的定义域为(1,2),则函数f(x+1)的定义域为()A(0,2)B(1,2)C(1,3)D(0,3)参考答案:A
2、【考点】函数的定义域及其求法【专题】函数的性质及应用;不等式的解法及应用【分析】函数f(2x1)的定义域为(1,2),求出2x+1的范围,再得出函数f(x)的定义域,最后求出函数f(x+1)的定义域【解答】解:函数f(2x1)的定义域为(1,2),12x13,即函数f(x)的定义域为(1,3)函数f(x+1)的定义域需满足1x+13,即0 x2,函数f(x+1)的定义域为(0,2)故选:A【点评】本题考查了函数的概念,符合函数定义域的求解方法思路,要求对函数要素的理解非常好5. 若A=(1,-2),(0,0),则集合A中的元素个数是 ( )A1个 B2个 C3个 D4个 参考答案:B6. 设,
3、是两个不同的平面,m是一条直线,给出下列命题:若m,m?,则;若m,则m则()A都是假命题B是真命题,是假命题C是假命题,是真命题D都是真命题参考答案:B【分析】由面面垂直的判定为真命题;若m,m与不垂直,【解答】解:由面面垂直的判定,可知若m,m?,则,故为真命题;如图m,m与不垂直,故是假命题故选:B7. 已知,若函数在上既是奇函数,又是增函数,则函数的图像是( )参考答案:A略8. 已知函数的定义域为0,1,值域为1,2,则函数的定义域和值域分别是( ) A. 0,1 ,1,2 B. 2,3 ,3,4 C. -2,-1 ,1,2 D. -1,2 ,3,4参考答案:C9. ( ) A. B
4、. C. D. 参考答案:C10. 已知函数f(x)=2x2mx+5,mR,它在(,2上单调递减,则f(1)的取值范围是()Af(1)=15Bf(1)15Cf(1)15Df(1)15参考答案:C【考点】函数单调性的性质【分析】由函数f(x)的解析式,结合二次函数的图象和性质,我们可以判断出函数图象的形状及单调区间,再由函数f(x)在(,2上单调递减,我们易构造一个关于m的不等式,解不等式得出m的范围,最后求(1)的取值范围即可得到结论【解答】解:函数f(x)=2x2mx+5的图象是开口方向朝上,以直线x=为对称轴的抛物线,若函数f(x)在(,2上单调递减,则2即m8f(1)=7m15故选C二、
5、 填空题:本大题共7小题,每小题4分,共28分11. 已知|=1, =(1,),(),则向量a与向量的夹角为参考答案:【考点】平面向量数量积的运算【专题】计算题;方程思想;综合法;平面向量及应用【分析】求出,代入夹角公式计算【解答】解:(),()?=0,即=1,|=2,cos=故答案为【点评】本题考查了平面向量的夹角计算,向量垂直与数量积的关系,属于基础题12. 设,函数在区间上的最大值与最小值之差为,则 参考答案:略13. 不等式的解集为 (用集合或区间表示).参考答案: 14. 已知点是直线上的动点,PA、PB是圆的两条切线,A、B是切点,C是圆心,那么四边形PACB面积的最小值为 。参考
6、答案:15. 设全集U=R,A=,则A(?UB)=参考答案:x|2x4【考点】交、并、补集的混合运算【分析】解不等式求出集合A、B,根据补集与交集的定义写出A(?UB)【解答】解:全集U=R,A=x|1=x|x1|1=x|x0或x2;B=x|x25x+40=x|x1或x4,?UB=x|1x4,A(?UB)=x|2x4故答案为:x|2x416. 已知函数将其图象向左平移个单位得到函数g(x)图象,且函数g(x)图象关于y轴对称,若是使变换成立的最小正数,则=参考答案:【考点】HJ:函数y=Asin(x+)的图象变换【分析】根据正弦函数的图象变换求得g(x),由题意可知=+k,kZ,求得的值,当k
7、=0时,取最小值【解答】解:将其图象向左平移个单位,则g(x)=sin2(x+)=sin(2x+),由所得图象关于y轴对称,则=+k,kZ解得:=2k+,kZ当k=0时,的最小值是故答案为:【点评】本题考查正弦函数的坐标变换,正弦函数的对称性,考查计算能力,属于基础题17. 已知A(1,2),B(3,4),C(2,2),D(3,5),则向量在上的射影为参考答案:【考点】9R:平面向量数量积的运算【分析】根据平面向量的坐标运算与向量射影的定义,进行计算即可【解答】解:A(1,2),B(3,4),C(2,2),D(3,5),=(2,2),=(1,3);|=,|=,?=2+23=4,cos,=;向量
8、在上的射影为|cos,=故答案为:三、 解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18. 等比数列中, .(1)求数列的通项公式;(2)令,求数列的前项和。参考答案:设数列的公差为 由 得 -6分 -10分 -14分19. 已知全集U=R,A=x|x2或x5,B=x|4x6,求?UA,?UB,AB,及?U(AB)参考答案:根据题意,A=x|x2或x5,则?UA=x|2x5,B=x|4x6,则?UB=x|x4或x6,又由A=x|x2或x5,B=x|4x6,则AB=x|5x6,AB=x|x2或x4,则?U(AB)=x|2x4略20. 如图中,是一个长方体截去一个角所得
9、多面体的直观图它的正视图和侧视图在右面画出(单位:cm)(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连接BC,证明:BC面EFG.参考答案:(1)解:俯视图如图58.图58 4分(2)解:所求多面体体积VV长方体V正三棱锥4462(cm3) 8分(3)证明:如图59,在长方体ABCDABCD中,图59连接AD,则ADBC.因为E、G分别为AA、AD中点,所以ADEG, 从而EGBC.又BC?平面EFG,所以BC面EFG. 12分略21. (本题满分13分)某工厂对某产品的产量与成本的资料分析后有如下数据:(1) 画出散
10、点图。(2) 求成本y与产量x之间的线性回归方程。(结果保留两位小数)参考答案:解:(1)图略 (5分) (2)解:设y与产量x的线性回归方程为略22. .已知函数是定义域(1,1)上的奇函数.(1)确定f(x)的解析式;(2)用定义证明:f(x)在区间(1,1)上是减函数;(3)解不等式.参考答案:(1);(2)证明见解析;(3).【分析】(1)利用奇函数的定义,经过化简计算可求得实数,进而可得出函数的解析式;(2)任取、,且,作差,化简变形后判断的符号,即可证得结论;(3)利用奇函数的性质将所求不等式变形为,再利用函数的定义域和单调性可得出关于的不等式组,即可解得实数的取值范围.【详解】(1)由于函数是定义域上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024融资租赁合同起诉状
- 2024年小型工程建筑施工协议
- 2024年保险合同标的保险范围确定
- 2024年尿素交易合同范本
- 2024年工程项目水电劳务分包协议
- 2024危险废物处置合同
- 2024年个人财务代理记账合同
- 2024个体经营转让的合同样本
- 2024工地承包合同范本
- 2024年城市地下排水系统智能监控合同
- 《突发事件应对法》考试题库(附答案)
- 水火箭的制作发射课件
- 北师大版高二英语新教材选择性必修二课文及翻译(中英文Word)
- 四种形态总结
- 欧盟GMP培训课件
- 人教版七年级美术上册全套课件
- 三课用色彩画心情课件
- 0427dl02金风2.0mw变流器型电气原理图
- 哈工大研究生课程-高等结构动力学-第四章课件
- 期中家长会二年级数学
- 仁义礼智信五常心态课件
评论
0/150
提交评论