注重“数学思想”的教育研究_第1页
注重“数学思想”的教育研究_第2页
注重“数学思想”的教育研究_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、注重“数学思想的教育研究【摘要】本文说明了“数学思想教育研究的重要意义,介绍了“数学思想的分类,详细地阐述了三种“数学思想的内涵、特点和教育功能,提出了“数学思想教育研究的相关建议。【关键词】数学理性思想数学求真思想数学创新思想一、数学思想的内涵和分类数学思想是几千年数学探究理论所创造的精神财富。根据数学哲学的近代研究,所谓数学思想指的是数学活动中的价值观念和行为标准。数学思想的内涵非常丰富,主要有数学创新思想、数学求真思想、数学理性思想、数学合作与独立考虑思想等。限于篇幅,本文重点仅就其中三种数学思想进展阐述。二、“数学思想教育研究的重要意义日本数学家米山国藏指出:多数学生进入社会后,几乎没

2、有时机应用他们在学校所学到的数学知识,因此这种作为知识的数学,通常在学生出校门后不到一两年就忘掉了,然而不管人们从事什么业务工作,那种铭记于大脑的数学思想却长期在他们的生活和工作中发挥着重要作用。为便于进展“数学思想的教育研究,本文围绕“数学思想的内涵、分类、特点和功能等问题作些根底工作。三、数学创新思想1创新思想的概念结合新情况、寻找新思路、解决新问题、创立新理论,这种思想叫创新思想。2数学创新思想的几个特点首先,问题是数学创新的起点。群论的创造是为理解决四次以上代数方程是否有根式解的问题。超限数的创立是为了进一步弄清数学分析的根底,为理解决画家怎样把立体的东西画在平面上,产生了射影几何。可

3、以说:“没有问题就没有数学创造。再者,创造的自由性在近现代数学中表现得越来越明显。德国数学家康托说:“数学的本质就在于自由。他主张数学家自由创造自己的概念,而无需顾及是否实际存在。这个认识使康托有可能超越有限的世界,以数学家的严密性建立起集合论和超限数;使几何学家超越感觉想象的空间,去研究非欧空间、n维空间;使公理数学家有可能建立抽象的纯数学和种种特异的数学来。总之,使数学家永葆创新思想,推动数学永往直前。3数学创新思想的教育功能创新是科学的本质,是社会开展的不竭动力。由于数学创新的典型事例多、创新理论对外界条件要求较少、创新成果易于展现,所以通过数学培养学生的创新思想是一条事半功倍的途径。通

4、过数学创新思想的培养,可以克制学生唯书、唯师、唯上,照抄照搬的陋习,增加学生探究研究问题的主动性,进步学生思维的创新性、广阔性、流畅性及灵敏性。四、数学求真思想1求真思想及其意义求真思想是不懈追求真理的思想。真理是人们在社会理论中形成的对主客观事物及其规律的正确认识。人类只有掌握了真理,才会能动地改造世界。因此,求真是科学的首要目的,求真思想是科学开展的内在动力。2数学求真思想的特点数学不同于其它科学,它是人类根据自己的需要而抽象建构起来的,它的真理性必须经受逻辑和理论的双重检验。数学求真的困难历程,磨练了数学特有的求真思想。首先数学求真比任何学科都重视逻辑。波利亚说:“对选择恰当的实例进展检

5、验,这是生物学家肯定猜测的唯一方法。但是对数学家来说,对选择的实例进展验证,从鼓励信心的角度来看是有用的,但这样还不能算是数学里证明了一个猜测。其次,数学求真要不轻信经历。非欧几何的平行公理和许多定理是与我们的经历不相符合的,但它们却构成了一个相容的几何系统,并在现代物理学中得到应用。“全体大于局部在常识中是当然的事,但在无限领域中却不成立。这是因为经历只能反映事物的表象,不能提醒事物的本质。再那么数学求真要勇于批判。非欧几何的诞生可以追溯到对欧氏平行公理的疑心。勒贝格积分的建立是由于发现了黎曼积分的局限性。希尔伯特创立形式公理化方法,是因为认识到了欧氏公理系统的不严格。这说明,不同观点的论争

6、同样是数学开展的重要动力。还有,同所有科学一样,数学求真也离不开刻苦钻研。瑞士数学家欧拉一生忘我工作,在双目失明的情况下,还口述了400篇论文和好几本书。正是这种思想才促成了他的丰功伟绩。3数学求真思想的教育功能数学求真思想可以激发人们追求和坚持真理的勇气和自信心。养成独立地发现问题、考虑问题和解决问题的习惯,不惧怕困难、不屈从挫折。教育人们客观公正地对待一切,不轻信经历,不迷信权威,不随波逐流。五、数学理性思想1数学理性思想的内涵依靠思维才能对感性材料进展一系列的抽象和概括、分析和综合,以形成概念、判断或推理,这种认识称为理性认识。重视理性认识活动,以寻找事物的本质、规律及内部联络,这种思想

7、称为理性思想。2数学理性思想的形成虽然理性思想在不少学科都有表现,但它最早却是由数学引入的,并逐步成为数学思想的核心和灵魂。早在公元前6世纪,希腊数学、哲学之父泰勒斯就看到:仅仅以个别测量实例的需要为目的,埃及人中流行的测量土地的方法是笨拙的。他认为:人类不但可以从实际经历中获得知识,也可以从已认可的事实出发,经演绎推理得出新的知识。假如作为出发点的事实正确,推理方法正确,所得的结论也必然正确。据此,他提出测地术应上升为建立在一般原理上的演绎的几何学。在泰勒斯将演绎推理引入数学后,希腊毕达哥拉斯学派接着提出:数学中的数、点、线、面及各种数学概念是人思维的抽象及概括,与实际事物截然不同。虽然考虑

8、抽象事物比考虑详细事物困难的多,但数学的抽象概括却给人类带来了最大的好处:研究对象一般性及所得结论的普适性。演绎推理与抽象概括相结合初步形成了数学理性思想。希帕索斯发现不可通约量后,人们开场认为感性认识是不可靠的,只有理性认识才是可靠的,并且渐渐地把演绎推理作为检验数学真理的必经途径之一。3数学理性思想的教育功能理性思想是数学对人类文明的最大奉献。数学理性思想的教育可以使人类看到理性的力量,增强利用思维推理获得成功的信念。进步思维的严谨性、抽象性、概括性、深入性,养成重视理论、勤于考虑的习惯。其中的公理化思想还能培育法制观念和法制社会。六、进展“数学思想教育研究的相关建议笔者认为,“数学思想教育研究可分为根底研究和普及研究两方面。根底研究包括:如何从数学认识论和数学理论中开掘“数学思想的内涵、特点,如何从数学史、数学家传记中开掘“数学思想的宏大作用和典型事例等。笔者相信,只要我们将上述根底研究和普及研究有机结合,就一定会使“数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论