版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、消元-解元一次方程组教案消元-解二元一次方程组教案一、内容和内容解析1.内容代入消元法解二元一次方程组2.内容解析二元一次方程组是解决含有两个提供运算未知数 的问题的有力工具,也是解决后续一些数学问题的基础。其解法将为解决这些问题的工具。如用待定系数法求一次函数解析式,在平面直角坐标系中求两直线交点坐标等.解二元一次方程组就是要把二元化为一元。而化归的方法就是代入消元法,这一方法同样是解三元一次方程组的基本思路,是通法。化归思想在本节中有很好的体现。本节课的教学重点是:会用代入消元法解一些简单的二元一次方程组,体会解二元一次方程组的思路是消元.二、目标和目标解析1.教学目标(1)会用代入消元法
2、解一些简单的二元一次方程组(2)理解解二元一次方程组的思路是消元,体会化归思想2.教学目标解析(1)学生能掌握代入消元法解一些简单的二元一次方程组的一般步骤,并能正确求出简单的二元一次方程组的解,(2)要让学生经历探究的过程.体会二元一次方程组的解法与一元一次方程的解法的关系,进一步体会消元思想和化归思想三、教学问题诊断分析1.学生第一次遇到二元问题,为什么要向一元转化,如何进行转化。需要结合实际问题进行分析。由于方程组的两个方程中同一个未知数表示的是同一数量,通过观察对照,可以发现二元一次方程组向 一元一次方程转化的思路2.解二元一次方程组的步骤多,每一步需要理解每一步的目的和依据,正确进行
3、操作,把探究过程分解细化,逐一实施。本节教学难点理:把二元向一元的转化,掌握代入消元法解二元一次方程组的一般步骤。四、教学过程设计1.创设情境,提出问题问题1篮球联赛中,每场都要分出胜负,每队胜1场得2分,负1场得1分,某队10场比赛中得到16分,那么这个队胜负场数分别是多少?你能用一元一次方程解决这个问题吗?师生活动:学生回答:能。设胜x场,负(10-x)场。根据题意,得2x+(10-x)=16x=6,则胜6场,负4场教师追问:你能根据问题中的等量关系列出二元一次方程组吗?师生活动:学生回答:能.设胜x场,负y场.根据题意,得我们在上节课,通过列表找公共解的方法得到了这个方程组的解,x=6,
4、y=4.显然这样的方法需要一个个尝试,有些麻烦,能不能像解一元一次方程那样来求出方程组的解呢?这节课我们就来探究如何解二元一次方程组.设计意图:用引言的问题引人本节课内容,先列一元一次方程解决这个问题,再二元一次方程组,为后面教学做好了铺垫.问题2 对比方程和方程组,你能发现它们之间的关系吗?师生活动:通过对实际问题的分析,认识方程组中的两个y都是这个队的负场数,由此可以由一个方程得到y的表达式,并把它代入另一个方程,变二元为一元,把陌生知识转化为熟悉的知识。师生活动:根据上面分析,你们会解这个方程组了吗?学生回答:会.由,得y=10-x 把代入,得2x+(10-x)=16 x=6设计意图:共
5、同探究,体会消元的过程.问题3 教师追问:你能把代入吗?试一试?师生活动:学生回答:不能,通过尝试,x抵消了.设计意图:由于方程是由方程,得来的,它不能又代回到它本身。让学生实际操作,得到体验,更好地认识这一点.教师追问:你能求y的值吗?师生活动:学生回答:把x=6代入得y=4教师追问:还能代入别的方程吗?学生回答:能,但是没有代入简便教师追问:你能写出这个方程组的解,并给出问题的答案吗?学生回答:x=6,y=4,这个队胜6场,负4场设计意图:让学生考虑求另一个未知数的过程,并如何优化解法。师生活动:先让学生独立思考,再追问.在这种解法中,哪一步最关键?为什么?学生回答:代入这一步教师总结:这
6、种方法叫代入消元法。教师追问:你能先消x吗?学生纷纷动手完成。设计意图:让学生尝试不同的代入消元法,为后面学习选择简单的代入方法做铺垫.2. 应用新知,拓展思维例 用代入法解二元一次方程组师生活动,把学生分两组,一组先消x, 一组先消y,然后每组各派一名代表上黑板完成。设计意图:借助本题,充分发挥学生的合作探究精神,通过比较,让学生自主认识代入消元法,并学会优选解法.3.加深认识,巩固提高练习 用代入法解二元一次方程组设计意图:提醒并指导学生要先分析方程组的结构特征,学会优选解法。在练习的基础上熟练用代入消元法解二元一次方程组.4.归纳总结,知识升华师生活动,共同回顾本节课的学习过程,并回答以
7、下问题3.在探究解法的过程中用到了哪些思想方法?4.你还有哪些收获?设计意图:通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生自我归纳概括的能力.5. 布置作业教科书第93页第2题五、目标检测设计设计意图:考查学生对代入法解二元一次方程组的掌握情况.高一数学必修1函数与方程教案函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。函数与方程的思想是中学数学的基本思想,也是历
8、年高考的重点。1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。方程思想是动中求静,研究运动中的等量关系;3.函数方程思想的几种重要形式(1)函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。(2)函数与不等式也可以相互转化,对于函数y=f(x),当y
9、0时,就转化为不等式f(x)0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式;(3)数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要;(4)函数f(x)=(1+x)n (nN*)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题;(5)解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论;(6)立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。七年级数学一元一次方程的讨论教案教学目标1、 经历由实
10、际问题抽象为方程模型的过程,进一步体会模型化的思想。2、 通过探究实际问题与一元一次方程的关系,感受数学的应用价值,提高分析问题,解决问题的能力。教学难点探究实际问题与一元一次方程的关系。知识重点建立一元一次方程解决实际问题教学过程(师生活动)设计理念创设情境提出问题信息社会,人们沟通交流方式多样化,移动电话已很普及,选择经济实惠的收费方式很有理实意义。出示教科书80页的例2;观察下列两种移动电话计费方式表:全球通神州行月租费50元/月0本地通话费0.40元/分0.60元/分设计以下问题:1、 你能从中表中获得哪些信息,试用自己的话说说。2、 猜一猜,使用哪一种计费方式合算?3、 一个月内在本
11、地通话200分和300分,按两种计费方式各需交费多少元?4、 对于某个本地通通话时间,会出现两种计费方式的收费一样的情况吗? 本例是一道与生活相关的移动电话收费的问题,让学生讨论选择经济实惠的收费方式很有现实意义。理解问题是本身是列方程的基础,本例是通过表格形式给出已知数据的,通过设计问题1、2、3让学生展开讨论,帮助理解,培养学生的读题能力和收集信息的能力。探索分析解决问题学生充分交流讨论、整理归纳解:1、用全球通每月收月租费50元,此外根据累计通话时间按0.40元/分加收通话费;用神州行不收月租费,根据累计通话时间按0.60元/分收通话费。2、 不一定,具体由当月累计通话时间决定。3、全球
12、通神州行200分130元120元300分170元180元4, 设累计通话t分,则用全球通要收费(50+0.4t)元,用神州行要收费0.6t元,如果两种计费方式的收费一样,则0.6t=50+0.4t移项得 0.6t-0.4t=50合并,得0.2t=50系数化为1,得t=250答:如果一个月内通话250分,那么两种计费方式的收费相同。问题2是开放性的,答案与通话时间有关以表格的形式呈现数据,简单明了,易于比较。通过探究实际问题与一元一次方程的关系,提高分析问题,解决问题的能力。综合应用巩固提高一个周末,王老师等3名教师带着若干名学生外出考察旅游(旅费统一支付),联系了标价相同的两家旅游公司,经洽谈
13、,甲公司给出的优惠条件是:教师全部付费,学生按七五折付费;乙公司给的优惠条件是:全部师生按八折付费,请你参谋参谋,选择哪家公司较省钱?学生练习,教师巡视,指导,讨论解是否合理开放题学生在现实的、富有挑战性的问题情境中多种角度认识问题,多种策略思考问题,尝试解释答案的合理性,培养探索精神和创新意识课堂小结知识梳理 小组讨论,试用框图概括用一元一次方程分析和解决实际问题的基本过程学生思考、讨论、整理。实际问题题列方程数学问题 (一元一次方程)实际问题的答案数学问题的解检验这是第一次比较完整地用框图反映实际问题与一元一次方程的关系。让学生结合自己的解题过程概括整理,帮助理解,培养模型化的思想和应用数学于现实生活的意识。小结与作业布置作业自我评价1、 必做题:教科书82页习题2.2第2题。2、 一个两位数,个位数字是十位数字的3倍,如果把个位数字与十位数字对调,那么得到的新数比原数大54,求原来的两位数。3、 选做:某学校组织学生春游,如果租用若干辆45座的客车,则有15个人没有座位,如果租用相同数量60座的客车,则多出1辆,其余车恰好坐满,已知租用45座的客车日租金为每辆车250元,60座的客车日租金为300元,问租用哪种客车更合算?租几辆车?本课教育评注(课堂设计理念,实际教学效果及改进设想)课程改革的目的之一是促进学习方式的转变,加强学习的主动性和探究性,本章内容涉及大量的实际问
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安徽省怀宁县高河中学2024-2025学年高二上学期1月期末地理试题(含答案)
- 2024陶瓷产业特色设计师劳动合同及权益保护协议3篇
- 2024版股权交易咨询服务协议
- 2025年KTV场地租赁合同附条件解除条款2篇
- 福建省南平市将口镇中学2022年高二语文月考试题含解析
- 2024速冻食品冷链物流保险及风险控制合作协议3篇
- 2024年上海市各区高三语文二模试卷【文言文阅读题】汇集练附答案解析
- 2024预售商品房抵押贷款与停车场管理合同范本3篇
- 2025年度安全培训与安全意识提升合同3篇
- 2024版房地产手续代办权责协议3篇
- 绵阳市高中2022级(2025届)高三第二次诊断性考试(二诊)历史试卷(含答案)
- 2025版工业制造工程垫资建设合同2篇
- 期末测试卷(试题)-2024-2025学年四年级上册数学沪教版
- 人工地震动生成程序
- 超星 尔雅 中国古典小说巅峰-四大名著鉴赏
- 挖掘机专业词语中英对照表2014-12-04
- 中考必备高频词汇2600词(单词版)
- SSB变桨系统的基础知识
- GB∕T 27552-2021 金属材料焊缝破坏性试验 焊接接头显微硬度试验
- 外贸中常见付款方式的英文表达及简要说明
- 抗压偏压混凝土柱承载力计算表格
评论
0/150
提交评论