勾股定理第一课时导学案_第1页
勾股定理第一课时导学案_第2页
勾股定理第一课时导学案_第3页
勾股定理第一课时导学案_第4页
勾股定理第一课时导学案_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、PAGE PAGE 5年级:八年级学科:数学主备:唐兵审核:石建忠课型:新授课题: 18.1勾股定理时间:2月15日学习目标:了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理.会用勾股定理进行简单的计算.学习重点:勾股定理的内容和证明学习难点:会用勾股定理进行简单的计算学习过程:一、自助探究温故知新直角三角形的性质:直角三角形两锐角 ;直角三角形斜边上的中线等于 ;直角三角形中30的角所对的直角边等于 。分别求出下式中的x的值: 探究在等腰三角形中: 一般直角三角形中:观察图1-1,正方形A中含有_个小方格,即A的面积是_个单位面积。正方形B的面积是_个单位面积。正方形C的面

2、积是_个单位面积。 在图1-2中,正方形A,B,C中各含有多少个小方格?它们的面积各是多少?SA =_,SB=_,SC=_。图2-1结合计算结果你能发现图中SA,SB,SC之间有什么关系吗?关系:_,结论:_ _在图2-1,图2-2中,任选一图,求正方形A,B,C的面积各是多少?SA,SB,SC还有上述关系吗?SA =_,SB=_,SC=_。关系:_ 结论: 勾股定理: 如果直角三角形的两直角边长分别为,斜边长为,那么 .勾股定理公式变形: 二、自助提升分别用下面的图形证明上述结论(方法:面积法)在RtABC,C=90已知 已知已知 已知、已知在RtABC中,有两边长为5,12,求第三边长及斜边上的高线的长度三、课堂小结: 这节课你学到了哪些知识?四、自助检测:填空题在RtABC,C=90,。在RtABC,B=90,。在RtABC,C=90,。一个直角三角形的三边为三个连续偶数,则它的三边长分别为 。已知直角三角形的两边长分别为和,则第三边长为 。已知等边三角形的边长为,则它的高为 ,面积为 。已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论