毕业设计(论文)-Web图像检索系统的设计_第1页
毕业设计(论文)-Web图像检索系统的设计_第2页
毕业设计(论文)-Web图像检索系统的设计_第3页
毕业设计(论文)-Web图像检索系统的设计_第4页
毕业设计(论文)-Web图像检索系统的设计_第5页
已阅读5页,还剩44页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、摘要计算机处理能力的日益增强,因特网技术的广泛普及和网络带宽不断提高,大量的图像信息不断产生,如何从这些海量图像数据中搜索人们感兴趣并有效利用这些图像,成为迫切需要解决的问题。本设计首先以“Web图像检索为背景介绍了在Internet中检索图像的根本概念和常用的两种重要技术:基于文本的图像检索和基于内容的图像检索,并简要阐述了它们的根本概念、原理,说明了目前这一领域的开展现状。其次重点介绍了图像的内容特征:颜色特征、纹理特征和形状特征,和以图像内容特征为根底的Web图检索原理,对常用的对应图像检索算法分别介绍和比照,并分析了其优劣性。最后以基于内容的图像检索为重点,利用VC+编程工具对Web图

2、像检索系统进行了模拟和验证。关键字:Web图象检索,特征提取,颜色直方图,相似度 AbstractThe capacity of computer processing is in increasing , Internet technology is in popular with more and more people and network bandwidth broadens, Besides, a mass of image data information is being produced constantly ,so how to find sone image what p

3、eople are interested in and to use these effectively from the Web,become a urgent problem.Firstly, this project introduced the basic concept of Web image retrieval and two common but important technologys :based on text image retrieval and content-based image retrieval. and briefly describes their b

4、asic concept, principle and the current situation of the development of this field. Secondly ,it introduced the contents characteristic: color image features, the texture featuress and shape features, and theory of Web image retrieval that is based on these content features,meanwhile ,several import

5、ant image retrieval algorithms used are introduced and compared, and analysed their advantages and disadvantages. Finally ,to content-based image retrieval, Design a “Web image retrieval system to simulate and test by using VC+ 6.0 programming tool.Keywords: Web image retrieval, feature extraction,

6、color histogram ,similarity目 录 TOC o 1-3 h z u HYPERLINK l _Toc262925956 摘要 PAGEREF _Toc262925956 h 1 HYPERLINK l _Toc262925957 Abstract PAGEREF _Toc262925957 h 2 HYPERLINK l _Toc262925958 目 录 PAGEREF _Toc262925958 h 3 HYPERLINK l _Toc262925959 第一章 前 言 PAGEREF _Toc262925959 h 5 HYPERLINK l _Toc26292

7、5960 1.1 Web图像检索概述 PAGEREF _Toc262925960 h 5 HYPERLINK l _Toc262925961 1.2 图像检索方法的研究综述 PAGEREF _Toc262925961 h 5 HYPERLINK l _Toc262925962 基于文本的检索 PAGEREF _Toc262925962 h 5 HYPERLINK l _Toc262925963 基于内容的图像检索技术 PAGEREF _Toc262925963 h 6 HYPERLINK l _Toc262925964 图像检索技术研究的三个方向 PAGEREF _Toc262925964 h

8、 7 HYPERLINK l _Toc262925965 图像检索系统的性能指标和评价准那么 PAGEREF _Toc262925965 h 7 HYPERLINK l _Toc262925966 第二章 Web图像检索原理 PAGEREF _Toc262925966 h 9 HYPERLINK l _Toc262925967 2.1 基于文本的图像检索 PAGEREF _Toc262925967 h 9 HYPERLINK l _Toc262925968 2.2 基于内容的图像检索 PAGEREF _Toc262925968 h 10 HYPERLINK l _Toc262925969 2.

9、2.1 体系结构 PAGEREF _Toc262925969 h 10 HYPERLINK l _Toc262925970 2.2.2 查询模块 PAGEREF _Toc262925970 h 10 HYPERLINK l _Toc262925971 特征提取模块 PAGEREF _Toc262925971 h 11 HYPERLINK l _Toc262925972 2.2.4 常用的图像特征 PAGEREF _Toc262925972 h 11 HYPERLINK l _Toc262925973 匹配模块 PAGEREF _Toc262925973 h 12 HYPERLINK l _To

10、c262925974 相似性度量函数 PAGEREF _Toc262925974 h 13 HYPERLINK l _Toc262925975 第三章 基于内容的图像颜色特征提取 PAGEREF _Toc262925975 h 15 HYPERLINK l _Toc262925976 常用的颜色模型 PAGEREF _Toc262925976 h 15 HYPERLINK l _Toc262925977 3.1.1 RGB模型 PAGEREF _Toc262925977 h 15 HYPERLINK l _Toc262925978 3.1.2 HSV模型 PAGEREF _Toc2629259

11、78 h 16 HYPERLINK l _Toc262925979 3.1.3 L*a*b模型 PAGEREF _Toc262925979 h 16 HYPERLINK l _Toc262925980 模型 PAGEREF _Toc262925980 h 16 HYPERLINK l _Toc262925981 颜色特征的提取 PAGEREF _Toc262925981 h 17 HYPERLINK l _Toc262925982 颜色直方图 PAGEREF _Toc262925982 h 17 HYPERLINK l _Toc262925983 颜色矩 PAGEREF _Toc2629259

12、83 h 18 HYPERLINK l _Toc262925984 颜色聚合向量 PAGEREF _Toc262925984 h 18 HYPERLINK l _Toc262925985 图像特征的相似性匹配 PAGEREF _Toc262925985 h 19 HYPERLINK l _Toc262925986 直方图相交法 PAGEREF _Toc262925986 h 19 HYPERLINK l _Toc262925987 欧氏距离方法 PAGEREF _Toc262925987 h 20 HYPERLINK l _Toc262925988 模糊方法 PAGEREF _Toc26292

13、5988 h 20 HYPERLINK l _Toc262925989 第四章 基于内容的图像纹理特征提取 PAGEREF _Toc262925989 h 22 HYPERLINK l _Toc262925990 灰度共生矩阵 PAGEREF _Toc262925990 h 22 HYPERLINK l _Toc262925991 灰度共生矩阵的简化计算 PAGEREF _Toc262925991 h 23 HYPERLINK l _Toc262925992 基于灰度共生矩阵的特征提取 PAGEREF _Toc262925992 h 24 HYPERLINK l _Toc262925993 综

14、合颜色、纹理特征的检索 PAGEREF _Toc262925993 h 24 HYPERLINK l _Toc262925994 第五章 图像检索系统设计与实现 PAGEREF _Toc262925994 h 26 HYPERLINK l _Toc262925995 系统开发环境介绍 PAGEREF _Toc262925995 h 26 HYPERLINK l _Toc262925996 系统需求分析 PAGEREF _Toc262925996 h 28 HYPERLINK l _Toc262925997 可行性分析 PAGEREF _Toc262925997 h 28 HYPERLINK l

15、 _Toc262925998 系统总体设计 PAGEREF _Toc262925998 h 29 HYPERLINK l _Toc262925999 系统功能结构图 PAGEREF _Toc262925999 h 29 HYPERLINK l _Toc262926000 系统模块设计与开发 PAGEREF _Toc262926000 h 29 HYPERLINK l _Toc262926001 系统测试 PAGEREF _Toc262926001 h 38 HYPERLINK l _Toc262926002 结果分析 PAGEREF _Toc262926002 h 45 HYPERLINK l

16、 _Toc262926003 总结 PAGEREF _Toc262926003 h 47 HYPERLINK l _Toc262926004 参考文献 PAGEREF _Toc262926004 h 48 HYPERLINK l _Toc262926005 致 谢 PAGEREF _Toc262926005 h 49第一章 前 言 Web图像检索概述从20世纪70年代开始,有关图像检索的研究就已开始,当时主要是基于文本的图像检索技术Text-based Image Retrieval,简称TBIR,利用文本描述的方式描述图像的特征,如绘画作品的作者、年代、流派、尺寸等。到90年代以后,出现了对

17、图像的内容语义,如图像的颜色、纹理、布局等进行分析和检索的图像检索技术,即基于内容的图像检索Content-based Image Retrieval,简称CBIR技术。CBIR属于基于内容检索Content-based Retrieval,简称CBR的一种,CBR中还包括对动态视频、音频等其它形式多媒体信息的检索技术。 在检索原理上,无论是基于文本的图像检索还是基于内容的图像检索,主要包括三方面:一方面对用户需求的分析和转化,形成可以检索索引数据库的提问;另一方面,收集和加工图像资源,提取特征,分析并进行标引,建立图像的索引数据库;最后一方面是根据相似度算法,计算用户提问与索引数据库中记录的

18、相似度大小,提取出满足阈值的记录作为结果,按照相似度降序的方式输出。 为了进一步提高检索的准确性,许多系统结合相关反应技术来收集用户对检索结果的反应信息,这在CBIR中显得更为突出,因为CBIR实现的是逐步求精的图像检索过程,在同一次检索过程中需要不断地与用户进行交互。1.2 图像检索方法的研究综述目前,检索的方法根本分为两大类:基于文本的图像检索和基于内容的图像检索。基于文本的检索基于文本的图像检索沿用了传统文本检索技术,回避对图像可视化元素的分析,而是从图像名称、图像尺寸、压缩类型、作者、年代等方面标引图像,一般以关键词形式的提问查询图像,或者是根据等级目录的形式浏览查找特定类目下的图像,

19、如Getty AAT使用近133,000个术语来描述艺术、艺术史、建筑以及其它文化方面的对象,并推出30多个等级目录,从7方面描述图像的概念、物理属性、类型和刊号等。又如Gograph将图像分为动态图像、照片、图标、背景、艺术剪辑图、插图、壁纸、界面、成套图像8个一级类,下设数量不等的子类。在图像数字化之前,档案管理者、图书管理员都是采用这种方式组织和管理图像。 图像所在页面的主题、图像的文件名称、与图像密切环绕的文字内容、图像的链接地址等都被用作图像分析的依据,根据这些文本分析结果推断其中图像的特征。现阶段,真正进入普通意义上的实用阶段的图像检索方法,根本上还都是采用了基于文本的检索方法。这

20、种方法,实际上就是靠人工为图像进行标注,用对图像的一些描述信息来作为检索时的关键字,如作者、标题、大致内容、创作时间等。广泛流行的商用搜索引擎,如G00GLE、百度。这种检索的策略,实际上是抛开了图像信息本身,其实质还是传统的文本信息检索。而且,显而易见的是,由于不同的人对同一幅图像可能有不同的理解,从而不可防止的造成了二义性。并且由于现实情况的复杂性,要建立能够完整表达图像信息的关键字是十分困难的,几乎不可能办得到。同时,随着图像的不断增多,人工标注的工作量也会急剧攀升。所以,使用这种方法,虽然在一定程度上缓解了人们的迫切需要,但往往不能取得令人满意的效果,应用范围受到极大的限制。所以说,基

21、于文本的图像检索方法,只能是权宜之策,而不是最终的解决之道。基于内容的图像检索技术基于内容的图像检索Content Based Image Retrieval,CBIR是基于内容检索技术Content Based Retrieval,CBR)的一种是近些年开展起来的侧重于挖掘图像本身特征的一种检索策略。图像的内容即图像的特征,而基于内容的检索就是通过两幅图像的特征匹配,即图像特征的相似性度量来实现的。要进行图像特征匹配首先要进行特征提取。图像的特征分为低层物理特征(如颜色、纹理、形状、轮廓等)和高层语意特征(是人对图像的概念级的反映,如对图像的个人感受等)。高层特征在目前的条件下,一般通过人工

22、注释的方法来实现,也就是前面说的基于文本的图像检索方法,这种方法要实现自动化有较大的困难,且主观性太强,不利于标准化的实现。而低层次的颜色、纹理、形状等特征那么相对较容易提取,也可较客观地反映图像之间的差异。基于内容的查询方法和基于文本的查询方法相比,有这样几个特点:(l)采用从图像中提取出来的颜色、纹理、形状等真实特征来作为检索的依据,而不是人为的文字评价;(2)对这些特征进行相似性度量,即采用近似查询的方法;(3)多采用例如查询的方法QBE(QuerybyExamPle),即给出例如图像,再从图库中查找与之相似的结果图像来。如果将图像检索和图像理解相比的话,两者在根底技术上比较相似,但还是

23、存在着许多重要的不同之处的。比方,CBIR并不需要计算机识别出具体的目标是什么,计算机可以在完全不了解具体内容的意义的情况,而找出假设干幅类似的图像来,另外,图像检索是模糊的相似性判断,检索结果应尽可能包含图像库中的所有相关图像,并且允许在结果中存在不相关的图像,而不同于图像识别那样必须找出明确的、完全相似的内容。采用CBIR方法开发的第一个功能较为齐全的系统,要属IBM公司Almadell研究中心开发的QBIC3(QuerybyImageContent)系统,它可以利用颜色、纹理、形状和草图等多种方法进行检索,用户只需给出例如图像或草图,就可方便地在图像库中找到相似的图像来。图像检索技术研究

24、的三个方向基于文本和基于内容是图像检索开展的两个分支,不过从目前图像检索研究的趋势而言,尤其结合网络环境下列图像的特征嵌入在具有文本内容的Web文档中,出现了三个不同的研究着眼点。 (1)立足于文本,对图像进行检索:试图将传统的文本检索技术移植于对多媒体信息的检索上,因为基于文本的检索技术开展已经成熟。但是因为受控词汇本身的局限,易歧义,更新慢,所以不太容易应对网络上日新月异的各类图像。 (2)立足于图像内容,对图像进行分析和检索:相比而言,尽管图像检索已经出现了诸如直方图、颜色矩、颜色集等多种表征图像特征的方法,但是要突破对低层次特征的分析,实现更高语义上的检索,实现难度大,进展慢。不过,基

25、于内容的图像检索建立在多媒体信息的内容语义上,能够更为客观地反映媒体本质的特征。 (3)结合文本和内容,进行融合性研究:发挥各自的优势促进图像的高效、简单检索方式的实现,尤其是网络环境下,结合图像所在Web文档的特征分析,推断图像的特征,同时结合对图像的内容分析,共同标引到达对图像的分析和检索。 以说,三个方向都是相互影响和促进的,任何一个方向的进展都会促进图像检索技术向前更进一步。图像检索系统的性能指标和评价准那么图像检索有两种类型:图像匹配和相似度检索。设图像库有N福图像。对于匹配问题,理想情况下是正确图像是检索结果V(X0)中第一个。通常用下面的式子评价匹配结果: 匹配比率=对相似度问题

26、,通常的方法是人工一个相似图像子集S,假定S中图像的相似性比S和非S图像的相似度高。取XS,Precision-Recall曲线能全面反映检索效果,下面称为P-R曲线,其中:recall=, precision=,由于相似图像集合S是人工选出的,这个评价标准不可辟免带有主观因素。不同人对相似度感受不同,因此在一定程度上不可取。此外,采用排序方法评价系统性能也是一种常用的方法。固定返回图像集合的数目n,设R为相关图像数目,p为相关图像的排序序号,T为实际的相关图像数目,评价参数为:AVPR=,LAVPR=,MT= , 其中AVPR是相关图像的平均排序,LAVPR是理想的相关图像的平均排序,MT为

27、丧失的相关图像率。一般地,AVPR 和LAVPR越小,检索算法越好,MT越好,性能越好。第二章 Web图像检索原理2.1 基于文本的图像检索基于文本的图像检索方法诞生于二十世纪70年代,是图像检索方法的常用技术之一,它利用人工进行图像语义识别,并用相应的文本关键词对图像语义进行注解以实现图像的检索。由于语言文字是人们进行语义表达最直观和熟知的手段,也是检索技术中广泛采用的检索方法,故通过其实现的图像检索使得检索形式较为简便、且由于采用人工注解图像语义,有效跨越了。语义鸿沟,从一定意义上说是基于语义的图像检索方法。在图像规模较小的初期应用中,这种方法有效地满足了图像的检索需求,然而,随着图像检索

28、应用的不断深入,利用人工提取图像语义标识以实现检索的方法存在着一些明显的缺陷:1、人工提取图像语义标识需要消耗大量的人力资源,尤其面对呈指数级增长态势的图像资源,完全依赖人工工作存在着明显的效率问题;2、人工实现图像语义标识的提取过程存在着主观片面性,图像的语义丰富,充分理解图像语义依赖于不同的知识结构及理解能力,不同人对其理解存在着主观差异性。因此,面对不断增长的图像资源检索需求,如何高效、客观地实现图像语义的识别是影响基于文本的图像检索方法开展的瓶颈技术。基于文本的图像检索结构如下所示:图像库文本检索人工标注图像关键字图像文本数据结果输出图2.1 基于文本的图像检索系统构成2.2 基于内容

29、的图像检索.1 体系结构本设计以VC+为开发环境实现了一个基于内容的图像检索原型系统如图2-2所示,主要用于验证各种特征提取算法的可行性和有效性。首先对用户提交的例如图像进行特征提取,然后与图像特征库中的特征值进行匹配,最后将检索结果返回给用户。系统的关键模块包括查询模块、特征提取模块、匹配模块,实际应用中每个模块都有许多具体技术可以采用,下面主要讨论各模块的功能及相关实现技术。用户界面图像输入模块特征提取模块查询接口模块图像显示模块检索匹配模块图像特征库图2.2 基于内容的图像检索系统结构 查询模块查询模块用于提供前端界面的有关查询接口,用户通过查询界面访问图像库从而找到满足要求的图像,检索

30、结果也是通过这个接口返回给用户。通常提供用户查询的方法有:(1)利用例如图像:即用户给定一幅与期望图像类似的图像作为查询图像。(2)利用绘制草图:即用户借助绘图工具绘制出待查询图像。(3)利用主色调的检索:用户可以设置图像颜色百分比和颜色分布信息,从而找到具有相似颜色及比率的图像。特征提取模块基于内容的图像检索首先要解决的问题就是图像内容的分析和表示。图像内容的分析和表示指的是通过对图像像素的颜色属性以及像素间的相住关系进行分析,从而得到一系列数字或者描述特征,这些特征可以在一定程度卜描述图像本身的内容。然后,利用这此特征可以对图像建立索引,从而到达图像检索的目的。因此,图像内容的表示问题本质

31、上是一个图像特征的提取问题。从广义上来讲,图像的特征包括图像的底层特征和高层语义特征。底层特征用来描述图像共有的特征,主要包括颜色、纹理、形状等;后者那么用来描述图像自身的内容信息,比较抽象。本设计主要基于图像底层特征的特征提取。系统中的特征提取模块负责图像处理工作,具体实现CBIR系统中支持的各种特征提取算法,从而能从图像中提取相应的特征信息。本节简要地介绍几种图像特征。 常用的图像特征1、颜色特征:颜色信息是在图像检索中使用最广泛的底层特征,它和图像中的物体和场景有找紧密的联系。与其他底层特征相比,颜色特征对于图像缩放、旋转、遮挡及其他形变有更强的鲁棒性。最早采用颜色特征进行图像检索的是由

32、Swain和Ballard提出的基于颜色直方图的检索方法。图像颜色特征的表达涉及如下几个方面的问题:一是选择一个适宜的颜色空间;二是将颜色特征量化为向量形式;三是定义种相似度(距离)标准用来度量不同图像之间在颜色上的相似性。由于颜色特征和其他特征相比具有一定的稳定性,不随物体的平移、旋转、观察距离的变化而变化,对于图像缩放、旋转、遮挡及其他形变有着更强的变化。2、纹理特征:纹理也是图像的一个重要属性。航空、遥感照片、织物设计图案、复杂的自然风景以及动植物都有纹理。纹理特征有两个要素构成:(1)纹理基元;(2)基元的排列。纹理基元是一种或多种图像基元的组合,有一定的现状和大小。纹理由纹理基元排列

33、而成,。基元排列的疏密程度、周期性、方向性的不同,能使图像的外观产生极大地改变。纹理可以认为是灰度(颜色)在空间以一定的形式变化而产生的图案,是真实图像区域固有的特征之一。类似于颜色,纹理也常取决于飞人们的感知,一般说来可以认为纹理是由许多相似接近的、互相编织的元素构成,所以直观来说纹理描述可提供图像区域的平滑、稀疏、规那么性等特性。3、形状特征:形状特征对于人类说是识别物体的主要信息,是一种重要的图像内容表达手段。按表达的形式分,可分为基于边界的和基于区域的两种类型。边界特征包括:线型形状,多边形逼近,有限元模型和傅里叶描绘子。区域特征主要有矩不变量等。形状特征是比颜色和纹理更高层一些的特征

34、,对形状的表达比对颜色或纹理的表达从本质上要复杂的多,图像的形状信息不随图像颜色等特征的变化而变化,是物体稳定的特征。特别对于图形,形状是它唯一重要的特征。形状特征的各种表示方法中一个重要标准是它必须具有仿射不变性,即相对于旋转平移和尺度变换具有不变性。通常来说,形状特征有两种表示方法,一种是基于边界轮廓特征(contour-based)的,包括:傅立叶形状描述户、小波轮廓描述子、边界直方图、链编码、曲率尺度空间等,其中最典型的方法为傅立叶形状描述子。一种是基于区域特征(region-based)的,如不变矩。前者只用到物体的外边界,而后者那么关系到整个对象所在的区域。4、语义特征:图像的视觉

35、特征在一定程度上能代表图像包含的信息,但事实上,人们判断图像的相似性并非仅仅建立在视觉特征的相似性上更多的状况下,用户主要根据返回图像的含义,而不是颜色、纹理、形状等特征,来判别图像满足自己需要的程度这些图像的含义就是图像的高层语义特征,它包含了人对图像内容的理解基于语义的图像检索的目的,就是要使计算机检索图像的能力到达人的理解水平在一般的图像内容层次模型中,语义位于最高层;第2层和第3层之间的差异被许多学者称为“语义鸿沟,语义鸿沟的存在是目前CBIR系统还难以被普通用户接受的原因在某些狭窄的专业领域。比方指纹识别和医学图像检索中,将图像低层特征和高层语义建立某种联系是可能的,但是在广泛领域内

36、,低层视觉特征与高层语义之间并没有很直接的联系。采用颜色、纹理、形状等底层特征对图像进行的描述往往与人对图像的描述存在较大的差异,直接利用这些特征作为检索依据常得不到令人满意的结果。解决这类问题的方法是采用高层的特征即“语义特征进行检索。由于它是从人类视觉理解出发,着眼于提取图像中符合人类视觉的概念。基于语义的检索技术难度很大,是图像检索领域的研究方向。在语义级图像检索技术中,关键是实现语义的提取。这就要解决两个问题:语义特征具有“模糊性,因此要提取图像的语义特征就必须解决特征的“模糊化问题;语义特征与人的视觉理解紧密相关,所以在检索中要融入人的视觉感知,在“理解图像的根底上检索图像。虽然采用

37、语义内容进行查询是最符合人的使用要求的方式,也是理想的检索方式,但是就当前的计算机和图像理解的开展水平来看,这种完全智能化的检索方法前正处于研究阶段,与实际应用还有较大的距离。匹配模块查询模块将用户的查询请求通过特征提取模块转换为查询特征向量,然后调用匹配模块计算特征库中的侮一个特征与待查图像特征的相似度,并按相似程度由大到小排列返回给用户所需要的图像。 基于内容的图像检索系统所使用的匹配不是精确匹配而是一种基一于相似的检索,它关心的是排序,选择适宜的相似性度量函数很重要。目前研究图像内容的相似性度量是指图像特征间的相似性,是图像检索研究的重要组成局部。相似性度量方法的好坏影响到图像检索的性能

38、;而相似性度量的计算复杂性影响到图像检索的用户响应时间。一般假设图像特征矢量是距离空间中的元素(其中的元素称为点),通过计算两点之间的接近程度来衡量图像特征之间的相似度。 相似性度量函数 对于图像特征向量X, Y,假设满足相似性度量中的正定性、对称性和一三角不等性度量公理,它们之间的相似程度可以采用下面的距离度量或统计学方法来进行图像相似性判断。定义D(I, J)为例如图像I和图像数据库中图像J之问的距离表示图像I的N维特征向量中第i个特征向量。(1)Minkowski距离如果图像特征向量互相独立而且同等重要,那么可以采用Minkowski距离L。来度量图像之间的相似性:D(I,J)=(-fi

39、(J)| p)这里当P分别等于1,2,时,D(I,J)称为L1,L2,L3,L 。(2)欧几里德距离欧几里德趾离是一个应用非常普遍的距离度量。它的计算简单,并且与参考系统的旋转不变量相关。它可以看作是当p=2时的Murkowski距离吞,即L2=3)直方图交距离(Histogram intersection)直方图交距离(Histogram intersection) G可以认为是L,距离的一种特殊形式,Swain等用直方图交距离来计算图像颜色之间的相似性。图像I和图像J的直方图间的交距离定义为:S(I,J)=第三章 基于内容的图像颜色特征提取在图像的形状、颜色、纹理等特征中,颜色特征是最显著

40、、最可靠、最稳定的视觉特征,是人识别图像的主要感知特征。相对几何特征而言,颜色对图像中子对象的大小和方向的变化都不敏感,具有相当强的鲁棒性。同时,在许多情况下,颜色又是描述一幅图像最简便而有效的特征。人们对于幅图像的印象,往往从图像中颜色的空间分布开始。所有这些都促使颜色成为基一于内容的图像检索所采取的主要手段,如何准确充分的提取一幅图像的颜色信息,井以适当的方式表示,将改接影响整个系统的效率和精度。常用的颜色模型所谓颜色模型就是指某个三维颜色空间的一个一可见光一子集,它包含某个颜色域的所有颜色。颜色模型的用途是在某个颜色域内方便地指定颜色,对于每一个颜色域都是可见光的子集,所以任何一个颜色模

41、型都无法包含所有可见光。 RGB模型所谓RGB模型,是指采用CIE规定的、以700nm(红)、546.1nm(绿)、435.8(蓝)三个光色为三基元,及颜色的三个属性所构成的模型。该模型将自然界的颜色通过选用这三基色按照不同比例混合而形成的模型,该模型可以用如下立方体来示意:图3.1 RGB颜色模型示意图值得注意的是,RGB模型所覆盖的颜色域取决于显示设备荧光点的颜色特性,是与硬件相关的,与人的视觉感知有一定的距离,人们无法感知给定一个RGB值其所对应的颜色,这时使用面向视觉感知的颜色模型比较方便。 HSV模型HSV空间是一种符合人类视觉感知特征的颜色空间,特别适合于人类肉眼对颜色的识别,因此

42、被广泛应用于计算机视觉领域。它把彩色信号表示为三种属性:色调H(Hue)、饱和度S(Saturation)和亮度V(value),其中亮度又称LightneSS或Intensity,所以HSV空间还有HLS和HIS这两种叫法。HSV模型的色调H表示从一个物体反射过来的或透过物体的光的波长,更一般地说,色调是由颜色名称来区分的,如红、橙、黄、绿等,它用角度-180180或O360来度量。亮度V是颜色的明暗程度,通常用百分比度量,0%为最暗的黑色,而100%为最亮的白色。饱和度S指颜色的深浅程度,即在纯色中包含的白色光的成份。例如同样是红色,也会因颜色浓度不同而分为深红色、粉红色和浅红色。饱和度S

43、也用百分比来度量,从浓度最小的0%到浓度完全饱和的100%。色调H和饱和度S分量合起来定义了颜色的色度(Chromatieity)特性。 3. L*a*b模型L*a*b颜色模型是在1931年国际照明委员会(CIE)制定的颜色度量国际标准的根底上建立的。1976年,这种模型被重新修订并命名为CIE L*a*b。L*a*b颜色设计为与设备无关,不管使用什么设备创立或输出图像,这种颜色模型产生的颜色都保持一致。L*a*b颜色由亮度或光亮度分量(L)和两个色度分量组成:即a分量(从绿到红)和b分量(从蓝到黄)。CMY模型以红、绿、蓝的补色青(eyan)、品红(Magenta)、黄(Yellow)为原色

44、构成的CMY颜色模型,常用于从白光中滤去某种颜色,又被称为减性原色系统。CMY颜色模型对应的直角坐标系的子空间与RGB颜色模型所对应的子空间几乎完全相同。差异仅在于前者的原点为白,而后者的原点为黑。前者是定义在白色中减去某种颜色来定义一种颜色,而后者是通过从黑色中参加颜色来定义一种颜色。CMY模型以打印在纸张上油墨的光线吸收特性为根底,当白光照射到半透明油墨上时,局部光谱被吸收,局部被反射回眼睛。理论上,青(Cyna)、品红(Magenta)、和黄(Yelolw)色素能够合成吸收所有的颜色并产生黑色。因为所有打印油墨都会包含一些杂质,这三种油墨实际上产生一种土灰色,必须与黑色(K)油墨混合才能

45、产生真正的黑色。将这些油墨混合产生颜色称为四色印刷。减色(CMY)和加色(RGB)是互补色,每对减色产生一种加色,反之亦然。选取适宜的颜色空间后,将采用有效的算法提取颜色特征,典型的表达方法有颜色直方图法(Color Histogram),颜色矩(Color Moments),颜色聚合向量CCV (Color Coherence Vector),颜色相关图(Color Correlograms)等。颜色直方图基于颜色直方图的特征表示其核心思想是在一定的颜色空间中对图像中各种颜色出现的频数进行统计。彩色图像的直方图描述的是不同颜色在整幅图像中所占的比例,而并不关心每种颜色所处的空间位置。所以颜色

46、直方图特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。由于颜色直方图具有尺度不变性和旋转不变性,因此被广泛采用。颜色直方图是由横坐标为颜色级别,纵坐标为颜色出现的频率所绘成的图形。它是颜色信息的函数,表示图像中具有相同颜色级别的像素的个数。全局直方图是一种经常被采用的颜色特征,已在很多图像检索系统中得到应用。设C(x,y)为RGB空间一幅彩色图像,其颜色直方图的定义为:1, if C(x,y)=k0 , 其他Hc(k)=h(C(x,y) k= 0,1,kh(C(x,y)=其中,M、N为图像C(x,y)垂直和水平方向上的像素数目,并简称为图像的高和宽;而k为变换空间的颜色数。

47、除此之外,还有如下几种直方图法:1、基于分块颜色直方图法,采用的分块方法是把图像分成单独的NN块,并且图像分块太大那么失去分块的意义,不能充分包含颜色的分布信息,分块太小那么会增加检索过程的计算量。经试验比较分析,对二维空间进行33划分是较有效的划分方案。2、累加直方图法:当图像中的特征并不能取遍所有可取值时,统计直方图中会出现一些零值。这些零值的出现会对计算直方图的相交带来很大影响,从而使得算出的匹配值并不能正确的反映两图间的颜色差异。累加直方图是以颜色作为横坐标,从坐标原点到该颜色的所有颜色的像素出现的频数为纵坐标绘出的图形。3 、局部累加直方图:在HSI空间里,H=0根本对应红色,H=p

48、i/3根本对应黄色,H=2pi/3根本对应绿色。这样在H轴上黄色与红色间,黄色与绿色间距相等。但从人的视觉感知来讲,黄色与红色间,黄色与绿色间本无所谓哪两个更相似。这说明色度信号的分布从视觉意义上讲,并不满足累加直方图应用的前提。所以,对色彩比较复杂的自然景物图像,一般累加直方图算法在检索中就会将不同色度的信号混淆起来。另外,一幅图像的颜色一般非常多,尤其是真彩色图像,因此直方图矢量的维数会非常高。如果能采用局部累加后降维,那么计算量要少得多。统设计中,我们采用Pi/3为区间的长度,将H轴共分成6个不重叠的局部区间60k, 60(k+1),k=0,1,5,通过分别计算每个局部区间的累加直方图进

49、行检索。上述方法都保存了颜色在图像中出现的概率信息,但也丧失了很多颜色的空间信息,因此不同的图像有可能具有相同颜色特征表示。从划分局部区域的角度来说可分为:基于固定块的图像分割、基于手工的区域分割、采用交互的半自动的区域分割以及一些自动的颜色分割方法。局部区域中的颜色信息可以表示为平均颜色、主颜色、颜色直方图和二进制颜色集等来表示。颜色直方图还具有以下性质: 性质一:直方图中的数值都是统计而来的,描述了该图像关于颜色的数量特征,可以反映图像颜色的统计分布和根本色调。 性质二:直方图丧失了图像的空间位置特征。因此,不同的图像可能有相同的颜色分布,从而就具有相同的直方图。性质三:直方图具有可叠加性

50、。如果将图像划分为假设干子区域,所有子区域的直方图之和等于全局直方图。颜色矩Stricker:和Orengo提出了颜色矩的方法33,认为颜色分布信息主要集中在图像颜色的低阶矩中,因此仅采用一阶(均值),二阶(方差)和三阶(斜度)等颜色矩可以很有效地表示图像中的颜色分布。与颜色直方图相比,该方法的另一个好处在于无需对特征进行向量化。颜色矩己经成功地应用于许多基于内容的图像检索系统(如QBIC)中。图像的颜色矩一共只需九个分量:三个颜色分量,每个分量上三个低阶矩,与它的颜色特征相比是非常简洁的。但是颜色矩特征的分辨能力较低,一般起到过滤缩小范围的作用,通常和其它特征结合使用。颜色聚合向量Pass等

51、提出以图像的颜色聚合矢量CCV(color coherence vector)作为图像的颜色特征,它是图像直方图的一种演变,其核心思想是当图像中颜色相似的像素所占据的连续区域的面积大于一定的阀值时,该区域中的像素为聚合像素,否那么为非聚合像素,这样统计图像所包含的每种颜色的聚合像素和非聚合像素的比率称为该图像的颜色聚合矢量,在图像检索过程中匹配目标图像的聚合矢量和检索图像的聚合矢量,聚合矢量中的聚合信息在某种程度上保存了图像颜色的空间信息。令定义为第i个聚合像素,为第j个非聚合像素,那么颜色聚合矢量(CCV)定义为:CCV=(1 ,1), (2, 2),(N , N)可以看出,(1 ,1),

52、(2, 2),(N , N)为图像的颜色直方图,由于参加了空间信息,采用颜色聚合向量CCV比采用颜色直方图检索的效果要好特别是对于大块的均匀区域或者图像中局部为纹理的图像检索效果更好。但是同时增大了计算量。3.3图像特征的相似性匹配在基于文本的检索方法中采用的是文本的精确匹配,而基于内容的图像检索那么是通过计算查询图像和图像库中候选图像之间在视觉特征上的相似度匹配进行。因此,定义一个适宜的视觉特征相似度度量方法对检索的效果有很大的影响。视觉特征大概可以表示成向量的形式,常用的相似度方法也是向量空间模型,即将视觉特征看作是向量空间中的点,通过计算两个点直接的接近程度来衡量图像特征间的相似度。常见

53、的方法有:直方图相交法、直方图欧氏距离、直方图余弦距离、二值集hammimg距离、直方图二次距离度量、二值集二次距离、直方图Mahalanobis距离。以下只简要介绍系统中常用的直方图的交、直方图欧氏距离两种距离度量方法。3直方图相交法度量直方图距离的一种经典方法就是直方图相交法。直方图的相交是指两个直方图在每个bin维度中共有的像素数量。具体做法是,根据颜色索引检索出查询图像的颜色直方图,将其与图像库中的每一图像的直方图取交集,根据交集的值来选出最正确匹配图像。在直方图相交法中,令HQ(K)和HR(K)分别为查询图像Q和图像库R的特征统计直方图,那么二者之间的匹配值为:直方图交集方法能对两幅

54、图像进行详细的比较,然而对于许多合成的图像,如商标等,它们有大量的一致颜色,三维直方图只有几个域的值很高,而其它许多域的颜色信息变化有限。因而,对于这样的图像进行过细的比较是不必要的。又由于在扫描图像时容易产生一些噪音,所以这种过细的比较容易产生错误的结果。3欧氏距离方法我们可以利用欧基里德距离公式Euclidean Distance来计算距离。对于两个 N维直方图x,y,两者的欧氏距离可以表示如下: 此距离公式虽然简单,但是与特定的颜色分布无关,因此我们可以引入相关权值A,这里A是一个维矩阵,此时距离公式可以表述如下: 为了简化计算,将直方图x,y标准化使其满足: 矩阵,权表示颜色i与颜色j

55、之间的相似度。假设取z=x-y,那么有,取定了距离公式后,我们需要确定A的取值,且要保证此矩阵A能够使,我们用表示颜色i与颜色j在RGB颜色空间的距离。 取。 有 因为.3模糊方法模糊理论是在美国加州大学伯克利分校电气工程系的L.zadeh教授于1965年创立的模糊集合理论的数学根底上开展起来的,主要包括模糊集合理论、逻辑、模糊推理和模糊控制等方面的内容。他认为所有的自然语言均是模糊的,比方红的和老的等概念没有明确的内涵和外延,因而是不明确的和模糊的。可是,特定的环境中,人们用这些概念来描述某个具体对象时却又能心领神会,很少引起误解和歧义。模糊控制的根本思想:把人类专家对特定的被控对象或过程的

56、控制策略总结成一系列以IF(条件)THEN(作用)形式表示的控制规那么,通过模糊推理得到控制作用集,作用于被控对象或过程。控制作用集为一组条件语句,状态语句和控制作用均为一组被量化了的模糊语言集,如正大,负大,正小,负小,零等。模糊集理论是对传统集合理论的一种推广,在传统集合理论中,一个元素或者属于一个集合,或者不属于一个集合;而对于模糊集来说,每一个元素都是以一定的程度属于某个集合,也可以同时以不同的程度属于几个集合。对人们现实生活中大量使用的一些含义确定但又不准确的语言表达,比方“今天天气很热、“车速过高,需要适当踩刹车等,用模糊数学可以很好的表达。第四章 基于内容的图像纹理特征提取纹理分

57、析在计算机视觉、模式识别以及数字图像处理中起着重要的作用。纹理可以用来探测和区分不同的物体和区域、推断物体的外表方向、研究物体的形状、区分各种物体所具有的不同的纹理类型。纹理是人眼视觉的重要组成局部,反映了物体的深度和外表信息,表达了物体外表颜色和灰度的某种变化,而这些变化又与物体本身的属性有关,是图像的固有特征之一。纹理基元有两类特征:一类是纹理基元本身的性质,如形状和大小;另一类特征是纹理基元之间的方向结构关系,如基元的排列方式、疏密、周期性及方向性。这两类特征的不同,能使图像的外观产生极大的改变,同时这两类特征之间还具有一定的依存关系。这里,我们认为纹理是像素灰度值在空间区域的变化模式。

58、这个定义对于大多数图像处理过程来说是适宜的,因为很多时候我们只关心图像的灰度分布。数字图像中的纹理是相邻像素的灰度或颜色的空间相关性,或是图像灰度和颜色随空间位置变化的视觉表现,使用数学或信息论的方法抽取的纹理度量称为纹理特征。由于纹理特征可用来对图像中的空间信息进行一定程度的定量描述,因此也是基于内容的图像检索中一个重要手段。它不仅反映图像的灰度统计信息,而且反映图像的空间分布信息和结构信息。根据人类视觉的感知,可用来描述纹理的性质有:均匀性(uniformity )、密度(density )、粗细度(coarseness )、粗糙度(roughness )、规律性(regularity )

59、 ,线性度(linearity )、定向性(directionality )、方向性(direction )、频率(frequency )和相位(phase )。上一章讨论的颜色特征无疑是图像视觉的重要感知特征,但是由于把图像的综合信息仅压缩到某一颜色空间,对于图像特征信息有时表示能力缺乏,易出现颜色相近而视觉相差甚远的情况。两幅颜色分布相近但纹理不同的图像,语义信息也不同。假设仅按照颜色特征进行检索势必会造成检索准确性的降低。如果引入图像的纹理特征,在进行相似性检索时会拉大两幅图像的相似性距离,使图像的检索结果更精确。统计分析的方法利用纹理的统计特性和规律来描述纹理,它适用于像木纹、砂地、草

60、坪那样的细而不规那么的自然纹理,也同样适用于人工纹理,是最早应用在纹理分析中的方法之一。统计方法从根据像素灰度值的统计分析出发,推导出一些统计量表达纹理特征。灰度共生矩阵是描述在方向上,相隔S像元距离的一对像元,分别具有灰度值i和j的出现概率,其元素可记为P(i, j)s,)简记为,。显然灰度共生矩阵是一个对称矩阵,其阶数由图像中的灰度级个数决定。假设灰度图像f(x,y)其灰度级数为L,那么有。灰度共生矩阵的各元素值由下式求得:P(i,j|s,)= ,假设给定如下的仅具有3个灰度级的图像区域,分别记数符合上述位置算子的像素空间组合的数目形成频度矩阵,再将其归一化,即除以符合位置关系的总数就得到

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论