版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 固态锂电池产业化及其影响深度研究报告 报告综述:从三个问题,深度解析固态锂电池当前产业化进度。本篇报告我们将 深度解析市场最关注的三个问题:1、半固态锂电池产业化对现有产业 链的影响?2、全固态锂电池体系的产业化进程如何?3、全固态锂电池产业化后对现有锂电池体系的冲击有多大?解析一:半固态锂电池产业化对现有电池产业链的影响几何?蔚来发布150KWh 固态电池,预计采用原位固化固液电解质制备一种全新的 半固态锂电池,主要解决无机固体电解质与电极固/固界面阻抗大的问 题,与传统凝胶电解质制备的半固态锂电池有所区别。半固态锂电池 对现有四大材料体系以及电池制备工艺没有太大的改变,只是一种过 渡产品
2、,并非解决安全性、提高能量密度的最终方案。解析二:全固态锂电池体系的产业化进程如何?预计 2020-2025 年 期间将逐步推出全固态锂电池产品。2007 年后研究进展显著加速,其 中日本丰田在固态锂电池的专利技术布局最深,国内起步时间晚。从 产品结构来看,聚合物体系已经有初步商业化产品面世,薄膜氧化物 体系实现小微电池领域商业化应用,硫化物体系电导率高,潜力大, 界面性能和工艺技术突破成为商业化关键。解析三:全固态锂电池产业化后对现有锂电池体系的冲击有多大?从生产工艺来看,聚合物路线可以兼容卷绕/叠片工艺路线;薄膜氧化物体系采用磁控溅射生产,设备壁垒高;硫化物体系有望兼容叠片工艺 路线。从材
3、料兼容性来看,正极兼容性最强,高电压复合正极潜力最大;负极有望逐步过渡到金属锂;电解液中有机溶剂被取代,新型锂盐在聚合物体系需求潜力大;隔膜将逐步被固态电解质取代。1. 解析一:半固态锂电池的产业化道路进展如何?全固态锂电池具备能量密度高、安全性高、柔性化等优势,同时又存在离子电导率低、界面阻抗大等问题短期无法商业化,这个已经得到市场普遍的认可,我们不再赘诉。我们本篇报告将深度解析市场最关注的三个问题:1、半固态锂电池对现有产业链的影响?2、 全固态锂电池体系的产业化进程如何?3、全固态锂电池产业化后对现有液态锂电池的材料体系和制备工艺有多大的冲击?1.1. 脚踏实地,半固态锂电池先行蔚来发布
4、 150KWh 固态电池,预计 2022 年四季度推出。2021 年 1 月 9 日,蔚来汽车举行 NIO DAY 发布会,发布 150kwh 固态电池包,预计将于 2022 年第四季度正式推出,能量密 度达到 360wh/kg。其中,固态电池主要采用了“原位固化固液电解质”,该技术的创新在于原 位聚合涂覆技术,即在基膜上进行的涂覆是由原位聚合反应实现,可以改善正负极界面接触, 预计原位聚合涂覆用了 LLZTO、LATP 等陶瓷固态电解质成分。我们认为原位固化固液技术主要为了解决无机电解质/电极的界面阻抗问题。目前市场上无机 固体电解质的研究主要集中在两大类,硫化物体系与氧化物体系,其中氧化物
5、体系 LLZTO、 LATP 等存在界面阻抗高、制备的电解质膜机械性能差、离子电导率低等短期无法有效解决 的问题。采用原位固化技术,能够实现固体电极片与电解质膜在分子层面的紧密接触,降低 固/固界面阻抗,有效提升电池的倍率性能。同时,参考最新的学术研究成果,目前氧化物电 解质的离子电导率仍处于 10-4 S/cm 左右的较低水平,暂时达不到商业化(10-2 S/cm)要求, 因此我们预计仍需要加入电解液来解决离子电导率。传统半固态锂电池,主要是指采用凝胶电解质制备的锂电池。凝胶电解质,是以聚合物为电 解质“基膜”,加入锂盐,同时加入碳酸二乙酯/碳酸乙烯酯等低分子有机溶剂作为增塑剂, 经过浸泡活
6、化后,得到离子电导率指标介于固体电解质和传统电解液之间的凝胶电解质。凝胶电解质具备固体和液体的双重优势,同时具备粘结性和液体快速传输性质。凝胶电解质 是针对目前聚合物固体电解质离子电导率低,而采取的一种折中方式。凝胶电解质既不是固 体,也不是液体,反过来讲既是液体,也是固体,因此同时兼备两者的优势。凝胶电解质种 类:目前研究较为成熟,已经商业化的有 PEO(聚环氧乙烯)基、PVDF-HFP(聚氯乙烯六氟丙烯)基、PMMA(聚甲基丙烯酸甲酯)基、PAN(聚丙烯腈)基。其优点在于:1、离子电导率比聚合物固体电解质高,一般在 10-3S/cm 数量级,基本满足商 业化应用需求。2、基本形态为固态,没
7、有流动的液体,封装简单,形状可以多样化,适用 于软包电池中。3、界面相容性较好,循环性能和倍率性能均较好。半固态锂电池只是一种过渡产品,并非最终解决方案。由于凝胶电解质还是含有少量低闪点 的有机溶剂,并没有从根本上解决电解液造成的安全性能问题,采用金属锂做负极仍有一定 的安全隐患,因此对能量密度的提升程度有限,是短期全固态锂电池没有实现商业化情况下 的一种折中解决方案,并非最终形态。1.2. 半固态锂电池商业化进展及制备工艺兼容性?珈伟股份实现第一期快充类固态锂电池投产。根据公司 2017 年 12 月 20 日公司,其控股子 公司珈伟龙能固态储能科技如皋第一期快充类固态锂电池生产线正式投产,
8、规模 1 亿 Wh。 公司通过引入离子液体或者凝胶电解质,改善电解质的界面浸润性和稳定性,降低界面阻抗, 达到类固态的标准,未来公司主要面向 4 种类型的电池:1、高镍电池,配套物流车、乘用 车等,能量密度达到 120-130Wh/kg,循环寿命 7000 次以上;2、磷酸铁锂电池,配套公家 车,客车;3、钛酸锂电池,配套卡车、拉煤车、轨道车等,循环寿命 20000 次以上;4、高能量密度锂电池,配套乘用车,能量密度到 230Wh/kg,循环寿命 2000 次以上。赣锋锂业一期项目固液混合的半固态锂电池实现规模化生产能力。公司与中科院许晓雄课题 组合作,设立全资子公司浙江锋锂新能源科技有限公司
9、,开展固态锂电池方面的产业化工作。 根据公司 2018 年 8 月 3 日投资者关系活动记录表资料显示,公司项目一期中样品电芯属于 混合固液电解质类型的半固态锂电池;按照产品设计的要求,该款电池是综合具备了较高比 能量、优异的功率特性及良好的循环寿命,同时易于规模化制备。按照现有循环测试数据推 算,预计该类电池可循环 3000 次,容量保持 80%(1C 充电/1C 放电,100%DOD,室温条件)。半固态锂电池制备工艺流程可兼容传统锂电池生产工艺。半固态锂电池的正极、负极极片的制备工艺可兼容传统锂电池卷绕和叠片的制备工艺。凝胶电解质制备工艺相对复杂,主要有 两种:1、传统工艺:基于分子间作用
10、力形成物理交联,再吸入电解液。需要经过聚合物成 膜、造孔剂萃出、电解液浸渍等步骤,制备出凝胶电解液后再通过叠片、卷绕的方式与正负极组装成电池。2、现场聚合工艺,其中热引发现场聚合是目前主流的技术。加入一定比例 的单体、热引发剂、交联剂、电解液混合均匀,制备前驱体溶液,注入电池壳中,臵于 50-120 下加热 0.5-1 小时,在不改变现有锂电池工艺的基础上,制备半固态锂电池。目前中科院物 理研究所、比亚迪、三洋株式会社、三星 SDI 均有相关的技术研究和专利储备。半固态锂电池对现有四大材料体系冲击较小。1、正极材料:可延续现有锂电池的正极材料 体系,磷酸铁锂、锰酸锂、钴酸锂、三元 NCM 等。
11、2、负极材料:目前主流的石墨系,钛酸 锂等、以及未来的硅碳系均可适用,由于存在电解液以及隔膜,不适用于金属锂负极。3、 电解液:仍需要少量的有机溶剂浸渍,目前主流的商业化锂盐 LiFP6,以及新型锂盐 LiTFSI/LiFSI 等需要添加。4、隔膜:由于仍有部分电解液存在,凝胶电解质不能起到电子绝 缘的作用,仍需要隔膜隔绝正负极防止短路。2. 解析二:全固态锂电池的产业化现状如何?业内预计全固态锂电池有望在 2020-2025 年期间实现小批量生产。早在 1978 年 Michel Armand 首次 报道了固态金属锂电池的相关研究,随后 40 年内固态锂电池被全球广泛研究,固体电解质离子电
12、导率低,界面相容性差等技术瓶颈制约了商业化进程,全固态锂电池的研究停滞于 20 世纪末,2007 年开始,全固态锂电池的研究开发复苏,2017 年中国电动汽车百人论坛上,业界预计 2020-2025 年全固态锂电池有望实现小批量生产。固体电解质按照体系主要分为两大类:有机体系和无机体系固体电解质。有机电解质相对简单一 些,主要以 PEO 为主,无机体系又可以细分为氧化物体系和硫化物体系。氧化物电解质体系又可 以细分为非晶态氧化物(薄膜氧化物)体系,以及晶态氧化物体系;硫化物体系也属于非晶态体 系的固体电解质。2.1. 从全球研究机构看全固态锂电池的产业化进程日本固态电池研究体系成熟,计划 20
13、22 年全面掌握全固态电池相关技术。日本在硫化物全 固态锂电池方面的研究成果较为突出。法国 Bollor公司是全球第一个将聚合物全固态锂电池 运用于电动车的公司。海外申请专利前 10 名中,日本公司占有 9 家,韩国公司占 1 家。其 中日本丰田株式会社申请的专利数最多,达到 218 件,占总申请数的 20.15%。2018 年 6 月,日本新能源产业技术综合开发机构宣布,将于未来五年内联合学术机构和企业共同开发 下一代电动车全固态锂电池。该项目预计总投资额 100 亿日元(5.8 亿元人民币),丰田、 本田、日产、松下等 23 家汽车、电池和材料企业,以及京都大学、日本理化学研究所等 15
14、家学术机构将共同参与研究,计划将于 2022 年全面掌握全固态电池相关技术。丰田的固态电池专利申请居全球之首,80%集中在无机固体电解质领域。丰田进入无机固体 电解质的时间相对较晚,但进行了持续性的专利布局,主要分布在氧化物电解质和硫化物电 解质方面。其中氧化物电解质只集中在 2010-2011 年期间,占比逐渐减少,丰田对硫化物电 解质的重视程度逐渐加大,重心主要放在如何减少硫化氢的产生,以及如何提高固体电解质的离子电导率方面。全球固态锂电池专利申请数量呈现加速提升趋势。据德温特数据库检索数据显示,在 1995-2015 年期间,海外全固体锂电池领域,共申请专利 1082 项。2007 年后
15、,海外对全固态锂电池的专利申请年均复合增速达到 35.3%。1996-2007 年期间,液态锂电池实现商业化 生产固态锂电池的研究持续低迷。2007 年后液态锂电池的技术趋于成熟,在安全性能和能量密度上的天花板也逐渐显露出来,海外主流研究机构加大对固态锂电池的研究力度。国内对固态锂电池的研究起步相对较晚。国内关于全固态锂电池专利申请数量相对较少, 1996-2015年期间共申请专利170项。通过检索国家知识产权局检索数据,查询了1996-2015 年期间公开的全固态锂电池专利申请数据,期间共申请专利 170 项。国内全固态锂电池仍处于基础性研究阶段。主要两部分机构在做相关研究:1、国内知名高
16、校及科研院所,具有代表性的团队有:清华大学南策文院士团队、中南大学刘业祥院士团队、 中科院物理所陈立泉院士团队、中科院宁波材料所许晓雄团队、中科院青岛能源所崔光磊教 授团队等。2、国内锂电池产业链上优秀企业,比如宁德时代、赣锋锂业、中航锂电、贝特瑞、力神、台湾辉能等等。2.2. 聚合物全固态锂电池:已有初步商业化产品面世聚合物电解质基体可类比于固态溶剂。聚合物电解质主要有三大体系,其中最早发现可以导锂, 研究相对成熟的是 PEO 基固体电解质体系,其次还包括聚碳酸酯基体系、聚硅氧烷基体系以及聚 合物锂单离子导体基体系。其优点在于工艺流程简单,原材料价格低廉,缺点在于离子电导率低, 常温电导率在
17、 10-610-7S/cm。2011 年法国 Bollor 公司实现聚合物固态锂电池商业化,核心点要采用高温加热。法国 Bollor 制 备的全固态锂电池,是国际上最早将聚合物全固态锂电池运用于电动汽车的案例,运用于市内租 赁电动车中。法国 Bollor 公司旗下子公司 Batscap 公司生产的聚合物全固态锂电池,用于 Autolib 项目,采用磷酸铁锂为正极,带电量 30KWh,测试数据表明,电池在 60-80期间工作,以 1/3C 的倍率循环 1200 圈后,容量保持率在 80%左右,单体电芯的能量密度为 230Wh/kg,续航里程达到250km,最高时速 130km/h,能够满足城市居
18、民的临时用车需求。2011-2015 年期间,博罗雷共计投 入 3000 辆电动汽车,租赁站点 1150 个,充电桩 6000 个,服务巴黎 12000 平方公里的 1300 万市民。 聚合物全固态锂电池的最大问题在于离子电导率低,法国 Bollor 公司采用安装加热装臵的方式给 电池加热实现正常使用,一方面带来安全隐患,另一方面也造成成本抬升。中国科学院青岛能源所突破高能量密度固态锂电池技术。青岛能源所研发的“刚柔并济”固体 电解质,复合刚性的多孔骨架材料和柔性的聚合物离子传输材料,改善电池的固固界面相容 性和抑制锂枝晶产生,成功研制能量密度 300Wh/Kg、循环寿命超过 500 次的全固
19、态锂电池。 通过了多次穿钉测试,固体电池体现出了一定的自修复功能,安全性很好,并通过了国家深 海中心的 11000 米深海压力舱检测。2017 年 3 月,青能所开发的“青能-”固体电池随中科 院深渊科考队远赴马里亚纳海沟,为“万泉”号着陆器控制系统及 CCD 传感器提供能源,累计 完成 9 次下潜,深度均大于 7000 米,其中 6 次超过 10000 米,最大工作水深 10901 米,累 计水下工作时间 134 小时,最大连续作业时间达 20 小时,顺利完成万米全深海示范应用。 相关成果已申请中国发明专利 29 项,国际 PCT 专利 3 项。其他大部分机构的聚合物全固态锂电池仍处于中试阶
20、段。1、日本电力研究所采用卷对卷工艺,制备输出电压 12V 的三层单体聚合物全固态锂电池,正极材料 NCM111,负极材料石 墨,固体电解质聚醚材料,正极表面涂覆无机物材料防止界面氧化,降低界面阻抗,室温电 导率 10-5S/cm,未来设想通过与热泵、储热槽组成的热水器结合,使其在较高温度下正常工作。2、日本三重县产业支援中心,同样采用卷对卷的生产工艺,制备了超薄可弯曲的聚合 物固态锂电池。正极材料是磷酸铁锂与碳的复合材料,负极是钛酸锂/硅/石墨的复合材料, 电解质是交联型聚氧乙烯结构。该电池能在 0正常工作,未来有望与太阳能电池、电子纸、 柔性底板等大面积元件相结合使用。3、SEEO 公司主
21、攻聚合物固态锂电池。SEEO 的研发 技术主要来自于美国能源部所属的劳伦斯伯克利国家实验室,主要研究方向是嵌段共聚物为 聚合物电解质。目前样品供货的电池组能量密度达到 130-150Wh/kg。2.3. 氧化物薄膜全固态锂电池:小微型电池领域实现商业化应用薄膜全固态锂电池主要通过磁控溅射方式商业化。薄膜全固态锂电池主要是指以 LiPON 为 电解质的锂电池,工作原理与传统锂电池相同,是重点研究的氧化物全固态锂电池体系,1992 年由美国橡树岭实验室通过射频磁控溅射 Li3PO4 靶材制备。由于 LiPON 离子电导率较低, 制备工艺苛刻,难以生产大电池,一般只能做成小微型电池,可用于微芯片、微
22、机电系统、 微型存储器、植入式医疗器械、无线传感器等低能量供电领域。美国 Sakti3 公司研究较为深 入,技术相对成熟,此外 Cymbet Enerchips, Excellatron, Front Edge Technology, Infinite Power Solutions 等公司均初步具备商业化生产能力。美国 Sakti3 生产薄膜全固态锂电池的技术相对成熟。1、美国 Sakti3 采用真空沉积法制备电池,预计为氧化物体系,成本可控。Sakti3 自 2007 年成立以来,获得了包括通用汽车 320 万美元在内的 3000 万美元风险投资,采用真空沉积法制备,公司已经在密西根的小型
23、示范 生产线上做小批量生产,未来有望在 1-2 年内实现商业化。2、韩国 GS Caltex 采用层层溅 射的方法制造出了超薄、邮票大小的固体锂离子电池。并在日本发行了样品。其正极材料为 LiCoO2,负极材料为锂,电解质材料为 LiPON。虽然其容量只有 0.5mAh,但是体积能量密 度超过 800wh/L,是普通锂离子电池的 1.2 倍,最高充电倍率可达 50 C,这款电池被用作无 线传送测试数据的小型温度感应器上,并可采用太阳能电池对其充电。国内率先商业化的是天津瑞晟晖能,产品性能稳定,能量密度超过 200Wh/kg。根据钜大锂电资料报道,公司已开发多款柔性薄膜全固态锂电池,目前已经在实
24、验室小试,近期将筹建 1 万块薄膜全固态锂电池的连续化生产中试线。据公司官网介绍:公司电池产品体系为钴酸 锂/LiPON 电解质/Li,公司采用多层薄膜电池堆垛结构提升单体电池能量密度,能量密度大 于 200Wh/kg。公司电池循环性能稳定,能稳定循环 1000 次,容量衰减率小于 5%,年自放 电率不超过 10%,工作温度范围-40160。应用领域包括军事工业、医疗电子、消费电子、 超级智能卡、微电子器件、可穿戴设备等等。空间测算:中短期应用领域以小微型电池领域为主,2020-2022 年预计维持高增速。根据 NanoMarkets 公司发布的 20152022 年薄膜电池和印刷电池市场报告
25、显示,随着智能卡、 包装、消费类电子产品、可穿戴设备以及物联网的迅速发展,薄膜电池在这些领域的市场将 从 2015 年的 3400 万美元增长到 2018 年的 1.83 亿美元,于 2022 年最终将达到 11 亿美元, 2018-2020 年的年均复合增速达到 56.6%。在微电子领域,薄膜型全固态锂电池是微机电系 统唯一匹配的能源形式,随着微机电系统的发展,其需求也将进一步增大。柔性电池市场空间增速大,预计 2015-2020年维持 46.6%的年均复合增速。根据 Markets and Markets 发布的全球柔性电池市场预测研究报告显示,2015-2020 年期间,全球柔性电池市
26、场以 46.6%的复合年增长率增长,到 2020 年预计将达 9.58 亿美元,为薄膜锂电池的市场化 带来了新的市场空间。中长期离子电导率进一步改善,薄膜全固态锂电池有望用于大型电池领域。在手机、笔记本 电脑,以及电动汽车领域对电池的能量密度、倍率性能都提出更高的要求。目前已有企业在 手机市场做薄膜全固态锂电池的商业化开发。2013 年被苹果收购的 Infinite Power Solution 开发出多层堆垛统一密封结构的薄膜型全固态锂电池。其中,1.3mm 厚的电池容量高达 1360mAh,可以满足手机使用需求,并且各项性能远优于当前商业化的锂离子电池,而制造 成本相当,都是 0.8 美元
27、/Wh 的制造成本。表明高容量的薄膜型全固态锂电池具有巨大的发 展潜力和应用前景。2.4. 硫化物全固态锂电池:界面性能和工艺技术突破成为商业化关键无机全固态锂电池的开发研究目前主要集中在硫化物电解质体系。材料端,离子电导率已经 接近电解液水平,是该类全固态锂电池最大的优势。丰田的商业化进展较快,有望率先实现硫化物全固态锂电池的产业化。1)2010 年,公司生产了一款 10cm 10cm 大小的全固态电池产品原型,采用层叠串联结构,平均电压 为 14.4V,正极采用 LiCoO2,负极采用石墨,电解质采用硫化物材料.2012 年采用层叠串联结构,以 NCM 三元材料为正极,石墨为负极,得到了单
28、体电压达 28V 的电池原型,其能量密度相对于液态电解液电 池提高了 5 倍。2014 年其实验原型能量密度达到 400Wh/kg。截止到 2017 年 2 月,丰田固态电池专 利数量达到 30 件,同时,公司计划在 2020 年实现硫化物固态电池的产业化,推出 10 款全固态电 池汽车。2)2010 年,日本 Idemitsu Kosan(出光兴产)开发了一款采用 Li2S-P2S5 电解质 A6 尺寸的层叠串联结构 固态锂离子电池单元,其电解质室温导电率达到4 10-3S/cm以上,厚度为100m,单体输出电压为14 16V。室温下,其放电容量为 136 mAh/g(30),低温下容量为
29、55mAh/g(20)。3)美国 Planar Energy 公司于 2010 年得到美国能源部先进研究计划署(ARPA-E)400 万美元的资助。 该公司拟采用印刷卷对卷工艺实现大面积电池生产。其关键技术在于通过化学沉积制备无机固 体电解质膜,采用印刷模式制备无机全固态锂电池。目前实验室已制备出容量为 5Ah 电池原型, 其体积能量密度达到 1200Wh/L(400Wh/kg)。4)三星日本横滨研究所也取得了一定成果,利用硫化物类固体电解质试制出 2000mAh、175Wh/kg 的压层型全固态二次电池,300 次循环保持 85%的容量。5)国内企业:CATL 在硫化物固态电池方面比较成熟,
30、改性后的 LiCoO2/硫化物电解质/Li 电池,在 0.1C 倍率下,能做到 200 周以上,容量保持率在 80%以上,处于行业领先水平。清陶能源:公司 核心在于高固含量的全陶瓷隔膜和无机固体电解质的开发和生产。目前团队已经和北汽开展合作 进行中试,未来可能作为北汽电动车的重要组件。3. 解析三:全固态锂电池产业化对现有电池体系的冲击有多大?3.1. 全固态锂电池&液态锂电池生产工艺对比3.1.1 聚合物全固态生产技术可以兼容现有产线聚合物全固态锂电池未来有望兼容传统液态锂电池生产工艺。聚合物电解质具备较好的韧性和机 械强度,成膜性能较好,可以直接生成厚度均匀的薄膜。日本电力研究所设想采用卷
31、对卷生产工 艺制备聚合物全固态锂电池。基本工艺流程为:1、溶胶-凝胶法制备聚合物固体电解质溶液,2、 分别在正、负极极片上涂布或印刷上已制备好的电解质溶液,3、紫外线照射挥发制备聚合物电 解质的溶剂,使电解质与电极固化粘合,4、卷对卷压实正极/电解质/负极,5、裁剪、抽气、封装。聚合物固态锂电池与液态锂电池生产工艺异同。目前主流的电池制备工艺有叠片工艺和卷绕工艺。 聚合物全固态锂电池对现有电池制备工艺大部分可以兼容,只需要在少部分环节做调整。1、电极极片制备工艺保持现有工艺不变;2、采用溶胶-凝胶法制备电解质溶液,需要烘烤蒸发溶剂, 得到固体电解质薄膜,工艺上增加电解质涂覆、紫外照射烘烤工艺;
32、3、由于没有电解液,不需 要注液工序。3.1.2 LiPON 薄膜全固态锂电池:工艺设备壁垒高,成本管控是关键极片及电解质薄膜工艺壁垒高。薄膜型全固态锂电池由致密的正极薄膜、负极薄膜和电解质薄膜 组成。1、电极制备方法与传统搅拌、涂覆法不一样,由于需要制备非常薄的电极膜,通常也是采用磁控溅射、脉冲激光沉积、热蒸发镀膜等方法,或者化学气相沉积、溶胶-凝胶等方法来成膜。 以上制备工艺导致薄膜型全固态锂电池的电极薄膜非常致密,材料利用率大幅提升,其循环性能、 界面相容性均大幅提升。2、LiPON 固体电解质薄膜制备方法与电极类似。电池制备工艺上,可以采用多层堆垛提升能量密度。由于采用磁控溅射等方式制
33、备的极片厚度很 薄,电池能量密度比较低,在电芯制备工艺上可以采用多层串联紧密堆垛的方式,来提高电芯能 量密度。3.1.3 硫化物全固态锂电池:制备工艺有望兼容传统锂电池叠片工艺极片及电解质薄膜工艺壁垒高。薄膜型全固态锂电池由致密的正极薄膜、负极薄膜和电解质薄膜 组成。1、电极制备方法与传统搅拌、涂覆法不一样,由于需要制备非常薄的电极膜,通常也是 采用磁控溅射、脉冲激光沉积、热蒸发镀膜等方法,或者化学气相沉积、溶胶-凝胶等方法来成膜。 以上制备工艺导致薄膜型全固态锂电池的电极薄膜非常致密,材料利用率大幅提升,其循环性能、 界面相容性均大幅提升。2、LiPON 固体电解质薄膜制备方法与电极类似。工
34、艺流程:硫化物全固态锂电池的制备工艺关键在于电解质的制备,正、负极材料的制备可以兼 容液态锂电池的现有工艺流程。制备硫化物电解质浆料,搅拌涂覆在已经制备完成的正极极片上, 经过干燥、压延等工序,制备固/固界面接触良好的正极/硫化物电解质薄层材料,切割、裁剪后 再与金属锂单层叠片,最后串联堆垛,焊接极耳,完成单体电芯的制备。大部分的设备仍可以沿 用现有锂电池生产设备,只是由于硫化物电解质对水分、氧气的敏感度比较高,在生产环境上有 了更高的要求,需要在更高级别的干燥间内进行生产,最好能在全封闭的充满氩气氛围的条件下 生产。同时,目前考虑到硫化物无机固体电解质膜的柔韧性不佳,在制备全固态锂二次电池时
35、更 多的采用叠片工艺,至于具体是分别制备电解质与正负极膜片后叠合,还是采用双层或多层一次 涂布制备电解质和正极的复合层,更适合规模化生产的技术路线还有待进一步的研究。3.2. 全固态锂电池&液态锂电池的电池材料体系对比全固态时代下,四大材料中正极和导电箔影响较小。我们对比全固态锂电池与现有液态锂电池的 材料体系,其中现有正极材料体系可以完全兼容,固态电解质高电化学窗口,可能兼容更高电压 的正极材料。电解液体系中,现有液态溶剂会被取代,聚合物路线中新型锂盐 LiTFSI、LiFSI 等应 用潜力巨大。负极材料可以兼容现有材料体系,也能逐步衍变到能量密度更高的金属锂,铜箔和 铝箔目前来看仍是最好的
36、导电载体材料,隔膜可能会被逐步取代。3.2.1. 正极材料体系:兼容性较强,高电压复合电极材料有望成为主流现有材料体系未颠覆,复合电极有望成为解决方案。全固态锂电池只是改变了正负极之间传导锂 离子的方式,对正极材料体系并没有出现颠覆性的改变。目前市场主流的磷酸铁锂、钴酸锂、锰 酸锂、以及未来高能量密度的 NCM811、NCA 等正极体系,均可用于全固态锂电池。在制备方法上, 为了解决固/固界面相容性的问题,未来可能会采取使用复合电极材料,包括:正极材料、导电剂、 固体电解质,在电极中同时起到导离子和导电子的作用。高电压正极材料在全固态时代下发展空间更大。目前电解液的电化学窗口较低,对于高电压的
37、正 极材料,需要添加高电压添加剂等方式,来配套使用。由于固体电解质大部分具备电化学稳定性 能好、电压高的特点,可配套高电压的正极材料,未来有望在现有体系下,发展高镍层状氧化物、 富锂锰基、高电压镍锰尖晶石型的正极材料。3.2.2. 负极材料体系:金属锂有望逐渐替代当前石墨、硅碳负极材料固体电解质由于具备致密性和高稳定性,以及足够高的机械强度,能量密度更高的金属锂负极也 可以用做负极材料,能够有效阻挡锂枝晶的穿透。未来金属锂有望成为全固态锂电池的主流负极 材料。全固态锂电池向下兼容现有的石墨负极以及硅碳负极、硅基负极,均可以直接兼容配套。但由于 能量密度较低,首次充放电会出现较明显的衰减现象,可以配合预锂化技术,补充首次充放电过 程中损耗的锂。实际上大规模使用金属锂的节奏一方面取决于固态锂电池电化学体系的发展进程,另一方面取决于现有生产环境的配套升级情况,金属锂对水氧的敏感度高,操作过程需要在保护 气氛下进行,对生产环境的要求苛刻。3.2.3. 电解液体系:有机溶剂将被替代,新型锂盐有望导入聚合物全固态锂电池溶剂方面:对于半固态锂电池,仍需要少量有机溶剂改善聚合物电解质的离子电导率。进入全固 态锂
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度安保人员职业健康管理与劳动合同2篇
- 二零二五版二手房购房合同定金及家具家电安装服务协议书3篇
- 二零二五版企业研发项目定金及借款合同3篇
- 二零二五版水上娱乐设施安全生产管理合同3篇
- 二零二五年度茶园承包经营与茶叶市场调研合同3篇
- 展会现场广告投放与媒体合作合同(二零二五年度)2篇
- 二零二五版国际贸易保险合同主体欺诈识别与应对措施合同3篇
- 右岸景苑S5幢0、30号商铺2025年度租赁合同24篇
- 二零二五年度预制构件钢筋加工定制合同3篇
- 展会品牌推广合同(2篇)
- 2023年保安公司副总经理年终总结 保安公司分公司经理年终总结(5篇)
- 中国华能集团公司风力发电场运行导则(马晋辉20231.1.13)
- 中考语文非连续性文本阅读10篇专项练习及答案
- 2022-2023学年度六年级数学(上册)寒假作业【每日一练】
- 法人不承担责任协议书(3篇)
- 电工工具报价单
- 反歧视程序文件
- 油气藏类型、典型的相图特征和识别实例
- 流体静力学课件
- 顾客忠诚度论文
- 实验室安全检查自查表
评论
0/150
提交评论