![2022浙江中考数学考点总结_第1页](http://file4.renrendoc.com/view/a14f30d72ae73ac0a470c13384c2fe37/a14f30d72ae73ac0a470c13384c2fe371.gif)
![2022浙江中考数学考点总结_第2页](http://file4.renrendoc.com/view/a14f30d72ae73ac0a470c13384c2fe37/a14f30d72ae73ac0a470c13384c2fe372.gif)
![2022浙江中考数学考点总结_第3页](http://file4.renrendoc.com/view/a14f30d72ae73ac0a470c13384c2fe37/a14f30d72ae73ac0a470c13384c2fe373.gif)
![2022浙江中考数学考点总结_第4页](http://file4.renrendoc.com/view/a14f30d72ae73ac0a470c13384c2fe37/a14f30d72ae73ac0a470c13384c2fe374.gif)
![2022浙江中考数学考点总结_第5页](http://file4.renrendoc.com/view/a14f30d72ae73ac0a470c13384c2fe37/a14f30d72ae73ac0a470c13384c2fe375.gif)
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第 PAGE5 页 共 NUMPAGES5 页2022浙江中考数学考点总结浙江中考数学考点总结一、平面直角坐标系1.各象限内点的坐标的特点2.坐标轴上点的坐标的特点3.关于坐标轴、原点对称的点的坐标的特点4.坐标平面内点与有序实数对的对应关系二、函数1.表示方法:解析法;列表法;图象法。2.确定自变量取值范围的原那么:使代数式有意义;使实际问题有意义。3.画函数图象:列表;描点;连线。三、几种特殊函数(定义图象性质)1. 正比例函数定义:y=kx(k0) 或y/x=k。图象:直线(过原点)性质:k0,k0,2. 一次函数定义:y=kx+b(k0)图象:直线过点(0,b)与y轴的交点和(-b/k
2、,0)与x轴的交点。性质:k0,k0,图象的四种情况:3. 二次函数定义:特殊地, 都是二次函数。图象:抛物线(用描点法画出:先确定顶点、对称轴、开口方向,再对称地描点)。 用配方法变为 ,那么顶点为(h,k对称轴为直线x=h;a0时,开口向上;a0时,开口向下。性质:a0时,在对称轴左侧,右侧;a0时,在对称轴左侧,右侧。4.反比例函数定义: 或xy=k(k0)。图象:双曲线(两支)用描点法画出。性质:k0时,图象位于,y随x;k0时,图象位于,y随x;两支曲线无限接近于坐标轴但永远不能到达坐标轴。四、重要解题方法1. 用待定系数法求解析式(列方程组求解)。对求二次函数的解析式,要合理选用一
3、般式或顶点式,并应充分运用抛物线关于对称轴对称的特点,寻找新的点的坐标。如以下图:2.利用图象一次(正比例)函数、反比例函数、二次函数中的k、b;a、b、c的符号。中考数学考点总结考点1:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数考核要求:(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;(2)知道常值函数;(3)知道函数的表示方法,知道符号的意义。考点2:用待定系数法求二次函数的解析式考核要求:(1)掌握求函数解析式的方法;(2)在求函数解析式中纯熟运用待定系数法。注意求函数解析式的步骤:一设、二代、三列、四复原。考点3:画二次函数的图像考核
4、要求:(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像(2)理解二次函数的图像,体会数形结合思想;(3)会画二次函数的大致图像。考点4:二次函数的图像及其根本性质考核要求:(1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联络;(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质。注意:(1)解题时要数形结合;(2)二次函数的平移要化成顶点式。中考数学考点锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。正弦(sin)等于对边比斜边;sinA=a/c余弦(cos)等于邻边比斜边;cosA=b/c正切(tan)等于对边比邻边;tanA=a/b余切(cot)等于邻边比对边;cotA=b/a正割(sec)等于斜边比邻边;secA=c/b余割(csc)等于斜边比对边。cscA=c/a互余角的三角函数间的关系sin(90-)=cos,cos(90-)=sin,tan(90-)=cot,cot(90-)=tan.平方关系:sin2()+cos2()=1tan2()+1=sec2()cot2()+1=csc2()积的关系:sin=tancoscos
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公路建筑材料质检合同范例
- 北京出租合同范例
- 财产抵押担保借款合同范本
- 冷库安装合同范例
- 公厕维修施工合同范本
- 公司工程装修合同范例
- 个人广告采购合同范本
- 全屋定制套餐合同范例
- 2025年度工伤事故责任认定与赔偿金支付协议书
- 包子配送合同范本
- 《消防机器人相关技术研究》
- 2024年考研政治真题及答案
- 【直播薪资考核】短视频直播电商部门岗位职责及绩效考核指标管理实施办法-市场营销策划-直播公司团队管理
- 项目设计报告范文高中
- 《千年古村上甘棠》课件
- 部编版小学语文二年级下册电子课文《小马过河》
- 《医疗机构工作人员廉洁从业九项准则》专题解读
- 爱车讲堂 课件
- 成立商会的可行性报告5则范文
- 市场监督管理局反电信网络诈骗工作总结
- 2024-2030年中国免疫细胞存储行业发展模式及投资战略分析报告
评论
0/150
提交评论