2021-2022学年重庆市双福育才中考数学最后一模试卷含解析及点睛_第1页
2021-2022学年重庆市双福育才中考数学最后一模试卷含解析及点睛_第2页
2021-2022学年重庆市双福育才中考数学最后一模试卷含解析及点睛_第3页
2021-2022学年重庆市双福育才中考数学最后一模试卷含解析及点睛_第4页
2021-2022学年重庆市双福育才中考数学最后一模试卷含解析及点睛_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1我国古代数学著作孙子算经中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何。”大致意思是:“用一根绳子去量一根木条,绳长剩余4.5尺,将

2、绳子对折再量木条,木条剩余一尺,问木条长多少尺”,设绳子长尺,木条长尺,根据题意所列方程组正确的是( )ABCD2若二次函数的图象经过点(1,0),则方程的解为( )A,B,C,D,3小明在九年级进行的六次数学测验成绩如下(单位:分):76、82、91、85、84、85,则这次数学测验成绩的众数和中位数分别为()A91,88B85,88C85,85D85,84.54利用运算律简便计算52(999)+49(999)+999正确的是A999(52+49)=999101=100899B999(52+491)=999100=99900C999(52+49+1)=999102=101898D999(52

3、+4999)=9992=19985在3,0,4,这四个数中,最大的数是( )A3B0C4D6如图所示,直线ab,1=35,2=90,则3的度数为()A125B135C145D1557如图,是一个工件的三视图,则此工件的全面积是()A60cm2B90cm2C96cm2D120cm28完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是()A6(mn)B3(m+n)C4nD4m9下列命题中,错误的是()A三角形的两边之和大于第三边B三角形的外角和等于360C等边三角形既是轴对称图形,又是中心对称图形D三角形的一条中线能将三角形分成面积相等的两部分10点A(

4、4,3)经过某种图形变化后得到点B(-3,4),这种图形变化可以是()A关于x轴对称B关于y轴对称C绕原点逆时针旋转D绕原点顺时针旋转二、填空题(本大题共6个小题,每小题3分,共18分)11已知矩形ABCD,ADAB,以矩形ABCD的一边为边画等腰三角形,使得它的第三个顶点在矩形ABCD的其他边上,则可以画出的不同的等腰三角形的个数为_.12如图,AB是O的直径,点C在AB的延长线上,CD与O相切于点D,若C=20,则CDA= 13如图,在RtAOB中,AOB=90,OA=2,OB=1,将RtAOB绕点O顺时针旋转90后得到RtFOE,将线段EF绕点E逆时针旋转90后得到线段ED,分別以O、E

5、为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分的面积是_14定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1,l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”根据上述定义,“距离坐标”是(1,2)的点的个数共有_个15如果两个相似三角形的面积的比是4:9,那么它们对应的角平分线的比是_16已知 ,是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足=1,则m的值是_三、解答题(共8题,共72分)17(8分)如图,在RtABC中,C=90,A=30,AB=8,点P从点A出发,沿折线ABBC向终点C运动,在A

6、B上以每秒8个单位长度的速度运动,在BC上以每秒2个单位长度的速度运动,点Q从点C出发,沿CA方向以每秒个单位长度的速度运动,两点同时出发,当点P停止时,点Q也随之停止设点P运动的时间为t秒(1)求线段AQ的长;(用含t的代数式表示)(2)当点P在AB边上运动时,求PQ与ABC的一边垂直时t的值;(3)设APQ的面积为S,求S与t的函数关系式;(4)当APQ是以PQ为腰的等腰三角形时,直接写出t的值18(8分)如图,一次函数y1kxb(k0)和反比例函数y2(m0)的图象交于点A(1,6),B(a,2)求一次函数与反比例函数的解析式;根据图象直接写出y1y2 时,x的取值范围19(8分)(1)

7、计算:(2)2+(+1)24cos60;(2)化简:(1)20(8分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x/(元/千克)506070销售量y/千克1008060 (1)求y与x之间的函数表达式;设商品每天的总利润为W(元),求W与x之间的函数表达式(利润收入成本);试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少时获得最大利润,最大利润是多少?21(8分)为了丰富校园文化,促进学生全面发展我市某区教育局在全区中小学开展“书法、武术、黄梅戏进校

8、园”活动今年3月份,该区某校举行了“黄梅戏”演唱比赛,比赛成绩评定为A,B,C,D,E五个等级,该校部分学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图,请根据图中信息,解答下列问题(1)求该校参加本次“黄梅戏”演唱比赛的学生人数;(2)求扇形统计图B等级所对应扇形的圆心角度数;(3)已知A等级的4名学生中有1名男生,3名女生,现从中任意选取2名学生作为全校训练的示范者,请你用列表法或画树状图的方法,求出恰好选1名男生和1名女生的概率22(10分)(感知)如图,四边形ABCD、CEFG均为正方形可知BE=DG(拓展)如图,四边形ABCD、CEFG均为菱形,且A=F求证:BE=DG

9、(应用)如图,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上若AE=2ED,A=F,EBC的面积为8,菱形CEFG的面积是_(只填结果)23(12分)如图,AB是O的直径,AC是O的切线,BC与O相交于点D,点E在O上,且DE=DA,AE与BC交于点F(1)求证:FD=CD;(2)若AE=8,tanE=34,求O的半径24如图,抛物线与x轴交于A,B,与y轴交于点C(0,2),直线经过点A,C.(1)求抛物线的解析式;(2)点P为直线AC上方抛物线上一动点;连接PO,交AC于点E,求的最大值;过点P作PFAC,垂足为点F,连接PC,是否存在点P,使PFC中的一个角等于CA

10、B的2倍?若存在,请直接写出点P的坐标;若不存在,请说明理由.参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】本题的等量关系是:绳长-木长=4.5;木长-绳长=1,据此列方程组即可求解【详解】设绳子长x尺,木条长y尺,依题意有故选A【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组2、C【解析】二次函数的图象经过点(1,0),方程一定有一个解为:x=1,抛物线的对称轴为:直线x=1,二次函数的图象与x轴的另一个交点为:(3,0),方程的解为:,故选C考点:抛物线与x轴的交点3、D【解析】试题分析:根据众数的定义:出现次数最多的数,

11、中位数定义:把所有的数从小到大排列,位置处于中间的数,即可得到答案众数出现次数最多的数,85出现了2次,次数最多,所以众数是:85,把所有的数从小到大排列:76,82,84,85,85,91,位置处于中间的数是:84,85,因此中位数是:(85+84)2=84.5,故选D考点:众数,中位数点评:此题主要考查了众数与中位数的意义,关键是正确把握两种数的定义,即可解决问题4、B【解析】根据乘法分配律和有理数的混合运算法则可以解答本题【详解】原式=999(52+49-1)=999100=1故选B【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法5、C【解析】试题分析:根

12、据实数的大小比较法则,正数大于0,0大于负数,两个负数相比,绝对值大的反而小因此,在3,0,1,这四个数中,301,最大的数是1故选C6、A【解析】分析:如图求出5即可解决问题详解:ab,1=4=35,2=90,4+5=90,5=55,3=180-5=125,故选:A点睛:本题考查平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题7、C【解析】先根据三视图得到圆锥的底面圆的直径为12cm,高为8cm,再计算母线长为10,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形半径等于圆锥的母线长计算圆锥的侧面积和底面积的和即可.【详解】圆锥的底

13、面圆的直径为12cm,高为8cm,所以圆锥的母线长=10,所以此工件的全面积=62+2610=96(cm2).故答案选C.【点睛】本题考查的知识点是圆锥的面积及由三视图判断几何体,解题的关键是熟练的掌握圆锥的面积及由三视图判断几何体.8、D【解析】解:设小长方形的宽为a,长为b,则有b=n-3a,阴影部分的周长:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m故选D9、C【解析】根据三角形的性质即可作出判断【详解】解:A、正确,符合三角形三边关系;B、正确;三角形外角和定理;C、错误,等边三角形既是轴对称图形

14、,不是中心对称图形;D、三角形的一条中线能将三角形分成面积相等的两部分,正确故选:C【点睛】本题考查了命题真假的判断,属于基础题根据定义:符合事实真理的判断是真命题,不符合事实真理的判断是假命题,不难选出正确项10、C【解析】分析:根据旋转的定义得到即可详解:因为点A(4,3)经过某种图形变化后得到点B(-3,4),所以点A绕原点逆时针旋转90得到点B,故选C点睛:本题考查了旋转的性质:旋转前后两个图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段的夹角等于旋转角二、填空题(本大题共6个小题,每小题3分,共18分)11、8【解析】根据题意作出图形即可得出答案,【详解】如图,ADAB

15、,CDE1,ABE2,ABE3,BCE4,CDE5,ABE6,ADE7,CDE8,为等腰三角形,故有8个满足题意得点.【点睛】此题主要考查矩形的对称性,解题的关键是根据题意作出图形.12、1【解析】连接OD,根据圆的切线定理和等腰三角形的性质可得出答案.【详解】连接OD,则ODC=90,COD=70,OA=OD,ODA=A=COD=35,CDA=CDO+ODA=90+35=1,故答案为1考点:切线的性质13、【解析】作DHAE于H, 根据勾股定理求出AB, 根据阴影部分面积=ADE的面积+EOF的面积+扇形AOF的面积-扇形DEF的面积,利用扇形面积公式计算即可.【详解】解:如图作DHAE于H

16、,AOB=, OA=2, OB=1,AB=,由旋转的性质可知OE=OB=1,DE=EF=AB=,可得DHEBOA,DH=OB=1,阴影部分面积=ADE的面积+EOF的面积+扇形AOF的面积-扇形DEF的面积,故答案:【点睛】本题主要考查扇形的计算公式,正确表示出阴影部分的面积是计算的关键14、4【解析】根据“距离坐标”和平面直角坐标系的定义分别写出各点即可.【详解】距离坐标是(1,2)的点有(1,2),(-1,2),(-1,-2),(1,-2)共四个,所以答案填写4.【点睛】本题考查了点的坐标,理解题意中距离坐标是解题的关键.15、2:1【解析】先根据相似三角形面积的比是4:9,求出其相似比是

17、2:1,再根据其对应的角平分线的比等于相似比,可知它们对应的角平分线比是2:1故答案为2:1.点睛:本题考查的是相似三角形的性质,即相似三角形对应边的比、对应高线的比、对应角平分线的比、周长的比都等于相似比;面积的比等于相似比的平方16、3.【解析】可以先由韦达定理得出两个关于、的式子,题目中的式子变形即可得出相应的与韦达定理相关的式子,即可求解.【详解】得+=-2m-3,=m2,又因为,所以m2-2m-3=0,得m=3或m=-1,因为一元二次方程的两个不相等的实数根,所以0,得(2m+3)2-4m2=12m+90,所以m,所以m=-1舍去,综上m=3.【点睛】本题考查了根与系数的关系,将根与

18、系数的关系与代数式相结合解题是解决本题的关键.三、解答题(共8题,共72分)17、(1)4t;(2)当点P在AB边上运动时,PQ与ABC的一边垂直时t的值是t=0或或;(3)S与t的函数关系式为:S=;(4)t的值为或【解析】分析:(1)根据勾股定理求出AC的长,然后由AQ=AC-CQ求解即可;(2)当点P在AB边上运动时,PQ与ABC的一边垂直,有三种情况:当Q在C处,P在A处时,PQBC;当PQAB时;当PQAC时;分别求解即可;(3)当P在AB边上时,即0t1,作PGAC于G,或当P在边BC上时,即1t3,分别根据三角形的面积求函数的解析式即可;(4)当APQ是以PQ为腰的等腰三角形时,

19、有两种情况:当P在边AB上时,作PGAC于G,则AG=GQ,列方程求解;当P在边AC上时, AQ=PQ,根据勾股定理求解.详解:(1)如图1,RtABC中,A=30,AB=8,BC=AB=4,AC=,由题意得:CQ=t,AQ=4t;(2)当点P在AB边上运动时,PQ与ABC的一边垂直,有三种情况:当Q在C处,P在A处时,PQBC,此时t=0;当PQAB时,如图2,AQ=4t,AP=8t,A=30,cos30=,t=;当PQAC时,如图3,AQ=4t,AP=8t,A=30,cos30=,t=;综上所述,当点P在AB边上运动时,PQ与ABC的一边垂直时t的值是t=0或或;(3)分两种情况:当P在A

20、B边上时,即0t1,如图4,作PGAC于G,A=30,AP=8t,AGP=90,PG=4t,SAPQ=AQPG=(4t)4t=2t2+8t;当P在边BC上时,即1t3,如图5,由题意得:PB=2(t1),PC=42(t1)=2t+6,SAPQ=AQPC=(4t)(2t+6)=t2;综上所述,S与t的函数关系式为:S=;(4)当APQ是以PQ为腰的等腰三角形时,有两种情况:当P在边AB上时,如图6,AP=PQ,作PGAC于G,则AG=GQ,A=30,AP=8t,AGP=90,PG=4t,AG=4t,由AQ=2AG得:4t=8t,t=,当P在边AC上时,如图7,AQ=PQ,RtPCQ中,由勾股定理

21、得:CQ2+CP2=PQ2,t=或(舍),综上所述,t的值为或点睛:此题主要考查了三角形中的动点问题,用到勾股定理,等腰三角形的性质,直角三角形的性质,二次函数等知识,是一道比较困难的综合题,关键是合理添加辅助线,构造合适的方程求解.18、(1)y12x4,y2;(2)x1或0 x1【解析】(1)把点A坐标代入反比例函数求出k的值,也就求出了反比例函数解析式,再把点B的坐标代入反比例函数解析式求出a的值,得到点B的坐标,然后利用待定系数法即可求出一次函数解析式;(2)找出直线在一次函数图形的上方的自变量x的取值即可【详解】解:(1)把点A(1,6)代入反比例函数(m0)得:m=16=6,将B(

22、a,2)代入得:,a=1,B(1,2),将A(1,6),B(1,2)代入一次函数y1=kx+b得:,;(2)由函数图象可得:x1或0 x1【点睛】本题考查反比例函数与一次函数的交点问题,利用数形结合思想解题是本题的关键19、(1)5(2) 【解析】(1)根据实数的运算法则进行计算,要记住特殊锐角三角函数值;(2)根据分式的混合运算法则进行计算.【详解】解:(1)原式=42+2+2+14=72=5;(2)原式=【点睛】本题考核知识点:实数运算,分式混合运算. 解题关键点:掌握相关运算法则.20、 (1)y2x200 (2)W2x2280 x8 000(3)售价为70元时,获得最大利润,这时最大利

23、润为1 800元【解析】(1)用待定系数法求一次函数的表达式;(2)利用利润的定义,求与之间的函数表达式;(3)利用二次函数的性质求极值.【详解】解:(1)设,由题意,得,解得,所求函数表达式为.(2).(3),其中,当时,随的增大而增大,当时,随的增大而减小,当售价为70元时,获得最大利润,这时最大利润为1800元.考点: 二次函数的实际应用.21、(1)50;(2)115.2;(3)12. 【解析】(1)先求出参加本次比赛的学生人数;(2)由(1)求出的学生人数,即可求出B等级所对应扇形的圆心角度数;(3)首先根据题意列表或画出树状图,然后由求得所有等可能的结果,再利用概率公式即可求得答案

24、解:(1)参加本次比赛的学生有:48%=50(人) (2)B等级的学生共有:50-4-20-8-2=16(人). 所占的百分比为:1650=32%B等级所对应扇形的圆心角度数为:36032%=115.2. (3)列表如下:男女1女2女3男(女,男)(女,男)(女,男)女1(男,女)(女,女)(女,女)女2(男,女)(女,女)(女,女)女3(男,女)(女,女)(女,女)共有12种等可能的结果,选中1名男生和1名女生结果的有6种.P(选中1名男生和1名女生)=612=12.“点睛”本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后

25、根据概率公式求出事件A或B的概率通过扇形统计图求出扇形的圆心角度数,应用数形结合的思想是解决此类题目的关键22、见解析【解析】试题分析:探究:由四边形ABCD、四边形CEFG均为菱形,利用SAS易证得BCEDCG,则可得BE=DG;应用:由ADBC,BE=DG,可得SABE+SCDE=SBEC=SCDG=8,又由AE=3ED,可求得CDE的面积,继而求得答案试题解析:探究:四边形ABCD、四边形CEFG均为菱形,BC=CD,CE=CG,BCD=A,ECG=FA=F,BCD=ECGBCD-ECD=ECG-ECD,即BCE=DCG在BCE和DCG中, BCEDCG(SAS),BE=DG应用:四边形

26、ABCD为菱形,ADBC,BE=DG,SABE+SCDE=SBEC=SCDG=8,AE=3ED,SCDE= ,SECG=SCDE+SCDG=10S菱形CEFG=2SECG=20.23、(1)证明见解析;(2)256;【解析】(1)先利用切线的性质得出CAD+BAD=90,再利用直径所对的圆周角是直角得出B+BAD=90,从而可证明B=EAD,进而得出EAD=CAD,进而判断出ADFADC,即可得出结论;(2)过点D作DGAE,垂足为G依据等腰三角形的性质可得到EG=AG=1,然后在RtGEG中,依据锐角三角函数的定义可得到DG的长,然后依据勾股定理可得到AD=ED=2,然后在RtABD中,依据

27、锐角三角函数的定义可求得AB的长,从而可求得O的半径的长【详解】(1)AC 是O 的切线,BAAC,CAD+BAD=90,AB 是O 的直径,ADB=90,B+BAD=90,CAD=B,DA=DE,EAD=E,又B=E,B=EAD,EAD=CAD,在ADF和ADC中,ADF=ADC=90,AD=AD,FAD=CAD,ADFADC,FD=CD(2)如下图所示:过点D作DGAE,垂足为GDE=AE,DGAE,EG=AG=12AE=1tanE=34,GDEG=34,即GD4=34,解得DG=1ED=EG2+GD2=2B=E,tanE=34,sinB=ADAB=GDED=35,即5AB=35,解得AB=253O的半径为256【点睛】本题考查了切线的性质,圆周角定理,圆的性质,全等三角形的判定和性质,利用等式的性质 和同角的余角相等判断角相等是解本题的关键24、(1);(2)有最大值1;(2,3)或(,)【解析】(1)根据自变量与函数值的对应关系,可得A,C点坐标,根据代定系数法,可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论