2022年黑龙江省哈尔滨市建平校中考数学考试模拟冲刺卷含解析及点睛_第1页
2022年黑龙江省哈尔滨市建平校中考数学考试模拟冲刺卷含解析及点睛_第2页
2022年黑龙江省哈尔滨市建平校中考数学考试模拟冲刺卷含解析及点睛_第3页
2022年黑龙江省哈尔滨市建平校中考数学考试模拟冲刺卷含解析及点睛_第4页
2022年黑龙江省哈尔滨市建平校中考数学考试模拟冲刺卷含解析及点睛_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1点M(1,2)关于y轴对称点的坐标为()A(1,2)B(1,2)C(1,2)D(2,1)2如果一组数据1、2、x、5、6的众数是6,则这组数据的中位数是( )A1B2C5D63(2016福建省莆田市)如图,OP是AOB的平分线,点C,D分别

2、在角的两边OA,OB上,添加下列条件,不能判定POCPOD的选项是()APCOA,PDOBBOC=ODCOPC=OPDDPC=PD4据国土资源部数据显示,我国是全球“可燃冰”资源储量最多的国家之一,海、陆总储量约为39000000000吨油当量,将39000000000用科学记数法表示为()A3.91010B3.9109C0.391011D391095如果实数a=,且a在数轴上对应点的位置如图所示,其中正确的是()ABCD6的平方根是( )A2BC2D7如图,已知函数与的图象在第二象限交于点,点在的图象上,且点B在以O点为圆心,OA为半径的上,则k的值为ABCD8如图所示,结论:;,其中正确的

3、是有( )A1个B2个C3个D4个9如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式()A(a+b)(ab)a2b2B(ab)2a22ab+b2C(a+b)2a2+2ab+b2D(a+b)2(ab)2+4ab10如图,ADE绕正方形ABCD的顶点A顺时针旋转90,得ABF,连接EF交AB于H,有如下五个结论AEAF;EF:AF=:1;AF2=FHFE;AFE=DAE+CFE FB:FC=HB:EC则正确的结论有( )A2个B3个C4个D5个二、填空题(本大题共6个小题,每小题3分,共18分)11若圆锥的底面半径长为10,侧面展开图是一个半圆,则该圆锥的母线

4、长为_12在ABC中,A:B:C=1:2:3,它的最小边的长是2cm,则它的最大边的长是_cm13近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班的学生成绩统计如下:成绩(分)60708090100人 数4812115则该办学生成绩的众数和中位数分别是( )A70分,80分 B80分,80分 C90分,80分 D80分,90分14请你算一算:如果每人每天节约1粒大米,全国13亿人口一天就能节约_千克大米!(结果用科学记数法表示,已知1克大米约52粒)15分式方程=1的解为_16直线AB,BC,CA

5、的位置关系如图所示,则下列语句:点A在直线BC上;直线AB经过点C;直线AB,BC,CA两两相交;点B是直线AB,BC,CA的公共点,正确的有_(只填写序号)三、解答题(共8题,共72分)17(8分)P是O内一点,过点P作O的任意一条弦AB,我们把PAPB的值称为点P关于O的“幂值”(1)O的半径为6,OP=1 如图1,若点P恰为弦AB的中点,则点P关于O的“幂值”为_;判断当弦AB的位置改变时,点P关于O的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点P关于0的“幂值”的取值范围; (2)若O的半径为r,OP=d,请参考(1)的思路,用含r、d的式子表示点P关于O的“幂值”或“

6、幂值”的取值范围_; (3)在平面直角坐标系xOy中,C(1,0),C的半径为3,若在直线y=x+b上存在点P,使得点P关于C的“幂值”为6,请直接写出b的取值范围_18(8分)已知二次函数 (1)该二次函数图象的对称轴是; (2)若该二次函数的图象开口向上,当时,函数图象的最高点为,最低点为,点的纵坐标为,求点和点的坐标;(3)对于该二次函数图象上的两点,设,当时,均有,请结合图象,直接写出的取值范围19(8分)某商场计划购进A,B两种新型节能台灯共100盏,A型灯每盏进价为30元,售价为45元;B型台灯每盏进价为50元,售价为70元(1)若商场预计进货款为3500元,求A型、B型节能灯各购

7、进多少盏?根据题意,先填写下表,再完成本问解答:型号A型B型购进数量(盏)x_购买费用(元)_(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?20(8分)如图,在五边形ABCDE中,BCD=EDC=90,BC=ED,AC=AD求证:ABCAED;当B=140时,求BAE的度数21(8分)如图,在ABC中,AB=AC,以AB为直径作O交BC于点D,过点D作O的切线DE交AC于点E,交AB延长线于点F(1)求证:BD=CD;(2)求证:DC2=CEAC;(3)当AC=5,BC=6时,求DF的长22(10分)某商店准备购进

8、甲、乙两种商品已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?(2)若该商店准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少?(利润=售价进价)23(12分)某高中学校为高一新生设计的学生板凳的正面视图如图所示,其中BA=CD,BC=20cm,BC、EF平行于地面AD且到地面AD的距离分别为40cm、8cm为使板凳两腿底端A、D之间的距离为50cm,那么横梁EF应为多长?(材质及其厚

9、度等暂忽略不计)24下表给出A、B、C三种上宽带网的收费方式:收费方式月使用费/元包时上网时间/h超时费/(元/min)A30250.05B50500.05C120不限时设上网时间为t小时(I)根据题意,填写下表:月费/元上网时间/h超时费/(元)总费用/(元)方式A3040方式B50100(II)设选择方式A方案的费用为y1元,选择方式B方案的费用为y2元,分别写出y1、y2与t的数量关系式;(III)当75t100时,你认为选用A、B、C哪种计费方式省钱(直接写出结果即可)?参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】关于y轴对称的点的坐标特征是纵坐标不变,横坐标变

10、为相反数.【详解】点M(1,2)关于y轴对称点的坐标为(1,2)【点睛】本题考查关于坐标轴对称的点的坐标特征,牢记关于坐标轴对称的点的性质是解题的关键.2、C【解析】分析:根据众数的定义先求出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即可得出答案详解:数据1,2,x,5,6的众数为6,x=6,把这些数从小到大排列为:1,2,5,6,6,最中间的数是5,则这组数据的中位数为5;故选C.点睛:本题考查了中位数的知识点,将一组数据按照从小到大的顺序排列,如果数据的个数为奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数为偶数,则中间两个数据的平均数就是这组数据的中位数.3、

11、D【解析】试题分析:对于A,由PCOA,PDOB得出PCO=PDO=90,根据AAS判定定理可以判定POCPOD;对于B OC=OD,根据SAS判定定理可以判定POCPOD;对于C,OPC=OPD,根据ASA判定定理可以判定POCPOD;,对于D,PC=PD,无法判定POCPOD,故选D考点:角平分线的性质;全等三角形的判定4、A【解析】用科学记数法表示较大的数时,一般形式为a10n,其中1|a|10,n为整数,据此判断即可【详解】39000000000=3.91故选A【点睛】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,

12、n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数5、C【解析】分析:估计的大小,进而在数轴上找到相应的位置,即可得到答案.详解:由被开方数越大算术平方根越大,即故选C.点睛:考查了实数与数轴的的对应关系,以及估算无理数的大小,解决本题的关键是估计的大小.6、D【解析】先化简,然后再根据平方根的定义求解即可【详解】=2,2的平方根是,的平方根是故选D【点睛】本题考查了平方根的定义以及算术平方根,先把正确化简是解题的关键,本题比较容易出错7、A【解析】由题意,因为与反比例函数都是关于直线对称,推出A与B关于直线对称,推出,可得,求出m即可解决问题;【详解】

13、函数与的图象在第二象限交于点,点与反比例函数都是关于直线对称,与B关于直线对称,点故选:A【点睛】本题考查反比例函数与一次函数的交点问题,反比例函数的图像与性质,圆的对称性及轴对称的性质.解题的关键是灵活运用所学知识解决问题,本题的突破点是发现A,B关于直线对称8、C【解析】根据已知的条件,可由AAS判定AEBAFC,进而可根据全等三角形得出的结论来判断各选项是否正确【详解】解:如图:在AEB和AFC中,有,AEBAFC;(AAS)FAM=EAN,EAN-MAN=FAM-MAN,即EAM=FAN;(故正确)又E=F=90,AE=AF,EAMFAN;(ASA)EM=FN;(故正确)由AEBAFC

14、知:B=C,AC=AB;又CAB=BAC,ACNABM;(故正确)由于条件不足,无法证得CD=DN;故正确的结论有:;故选C【点睛】此题主要考查的是全等三角形的判定和性质,做题时要从最容易,最简单的开始,由易到难9、B【解析】根据图形确定出图1与图2中阴影部分的面积,由此即可解答【详解】图1中阴影部分的面积为:(ab)2;图2中阴影部分的面积为:a22ab+b2;(ab)2a22ab+b2,故选B【点睛】本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键10、C【解析】由旋转性质得到AFBAED,再根据相似三角对应边的比等于相似比,即可分别求得各选项正确与否.【详解

15、】解:由题意知,AFBAEDAF=AE,FAB=EAD,FAB+BAE=EAD+BAE=BAD=90.AEAF,故此选项正确;AFE=AEF=DAE+CFE,故正确;AEF是等腰直角三角形,有EF:AF=:1,故此选项正确;AEF与AHF不相似,AF2=FHFE不正确.故此选项错误,HB/EC,FBHFCE,FB:FC=HB:EC,故此选项正确.故选:C【点睛】本题主要考查了正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,熟练地应用旋转的性质以及相似三角形的性质是解决问题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、2【解析】侧面展开后得到一个半圆,半圆的

16、弧长就是底面圆的周长依此列出方程即可【详解】设母线长为x,根据题意得2x2=25,解得x=1故答案为2【点睛】本题考查了圆锥的计算,解题的关键是明白侧面展开后得到一个半圆就是底面圆的周长,难度不大12、1【解析】根据在ABC中,A:B:C=1:2:3,三角形内角和等于180可得A,B,C的度数,它的最小边的长是2cm,从而可以求得最大边的长【详解】在ABC中,A:B:C=1:2:3,A+B+C=180, A=30,B=60,C=90. 最小边的长是2cm,a=2.c=2a=1cm.故答案为:1.【点睛】考查含30度角的直角三角形的性质,掌握30度角所对的直角边等于斜边的一半是解题的关键.13、

17、B【解析】试题分析:众数是在一组数据中,出现次数最多的数据,这组数据中80出现12次,出现的次数最多,故这组数据的众数为80分;中位数是一组数据从小到大(或从大到小)排列后,最中间的那个数(最中间两个数的平均数).因此这组40个按大小排序的数据中,中位数是按从小到大排列后第20,21个数的平均数,而第20,21个数都在80分组,故这组数据的中位数为80分.故选B考点:1.众数;2.中位数.14、2.51【解析】先根据有理数的除法求出节约大米的千克数,再用科学计数法表示,对于一个绝对值较大的数,用科学记数法写成 的形式,其中,n是比原整数位数少1的数.【详解】1 300 000 000521 0

18、00(千克)=25 000(千克)=2.51(千克)故答案为2.51【点睛】本题考查了有理数的除法和正整数指数科学计数法,根据科学计算法的要求,正确确定出a和n的值是解答本题的关键.15、x=1【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解详解:两边都乘以x+4,得:3x=x+4,解得:x=1,检验:x=1时,x+4=60,所以分式方程的解为x=1,故答案为:x=1点睛:此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验16、【解析】根据直线与点的位置关系即可求解【详解】点A在直线BC上是错误的;直线AB经过点C是错误的;直线AB,

19、BC,CA两两相交是正确的;点B是直线AB,BC,CA的公共点是错误的故答案为【点睛】本题考查了直线、射线、线段,关键是熟练掌握直线、射线、线段的定义三、解答题(共8题,共72分)17、(1)20;当弦AB的位置改变时,点P关于O的“幂值”为定值,证明见解析;(2)点P关于O的“幂值”为r2d2;(3)3b.【解析】【详解】(1)如图1所示:连接OA、OB、OP由等腰三角形的三线合一的性质得到PBO为直角三角形,然后依据勾股定理可求得PB的长,然后依据幂值的定义求解即可;过点P作O的弦ABOP,连接AA、BB先证明APABPB,依据相似三角形的性质得到PAPB=PAPB从而得出结论;(2)连接

20、OP、过点P作ABOP,交圆O与A、B两点由等腰三角形三线合一的性质可知AP=PB,然后在RtAPO中,依据勾股定理可知AP2=OA2-OP2,然后将d、r代入可得到问题的答案;(3)过点C作CPAB,先求得OP的解析式,然后由直线AB和OP的解析式,得到点P的坐标,然后由题意圆的幂值为6,半径为1可求得d的值,再结合两点间的距离公式可得到关于b的方程,从而可求得b的极值,据此即可确定出b的取值范围【详解】(1)如图1所示:连接OA、OB、OP,OA=OB,P为AB的中点,OPAB,在PBO中,由勾股定理得:PB=2,PA=PB=2,O的“幂值”=22=20,故答案为:20;当弦AB的位置改变

21、时,点P关于O的“幂值”为定值,证明如下:如图,AB为O中过点P的任意一条弦,且不与OP垂直,过点P作O的弦ABOP,连接AA、BB,在O中,AAP=BBP,APA=BPB,APABPB,PAPB=PAPB=20,当弦AB的位置改变时,点P关于O的“幂值”为定值;(2)如图3所示;连接OP、过点P作ABOP,交圆O与A、B两点,AO=OB,POAB,AP=PB,点P关于O的“幂值”=APPB=PA2,在RtAPO中,AP2=OA2OP2=r2d2,关于O的“幂值”=r2d2,故答案为:点P关于O的“幂值”为r2d2;(3)如图1所示:过点C作CPAB,CPAB,AB的解析式为y=x+b,直线C

22、P的解析式为y=x+联立AB与CP,得,点P的坐标为(b,+b),点P关于C的“幂值”为6,r2d2=6,d2=3,即(b)2+(+b)2=3,整理得:b2+2b9=0,解得b=3或b=,b的取值范围是3b,故答案为:3b.【点睛】本题综合性质较强,考查了新定义题,解答过程中涉及到了幂值的定义、勾股定理、等腰三角形的性质、相似三角形的性质和判定、一次函数的交点问题、两点间的距离公式等,依据两点间的距离公式列出关于b的方程,从而求得b的极值是解题的关键18、 (1)x=1;(2),;(3)【解析】(1)二次函数的对称轴为直线x=-,带入即可求出对称轴,(2)在区间内发现能够取到函数的最低点,即为

23、顶点坐标,当开口向上是,距离对称轴越远,函数值越大,所以当x=5时,函数有最大值.(3)分类讨论,当二次函数开口向上时不满足条件,所以函数图像开口只能向下,且应该介于-1和3之间,才会使,解不等式组即可.【详解】(1)该二次函数图象的对称轴是直线;(2)该二次函数的图象开口向上,对称轴为直线,当时,的值最大,即把代入,解得该二次函数的表达式为当时,(3)易知a0,当时,均有,,解得的取值范围【点睛】本题考查了二次函数的对称轴,定区间内求函数值域,以及二次函数图像的性质,难度较大,综合性强,熟悉二次函数的单调性是解题关键.19、(1)30 x, y,50y;(2)商场购进A型台灯2盏,B型台灯7

24、5盏,销售完这批台灯时获利最多,此时利润为1875元【解析】(1)设商场应购进A型台灯x盏,表示出B型台灯为y盏,然后根据“A,B两种新型节能台灯共100盏”、“进货款=A型台灯的进货款+B型台灯的进货款”列出方程组求解即可;(2)设商场销售完这批台灯可获利y元,根据获利等于两种台灯的获利总和列式整理,再求出x的取值范围,然后根据一次函数的增减性求出获利的最大值【详解】解:(1)设商场应购进A型台灯x盏,则B型台灯为y盏,根据题意得:解得:答:应购进A型台灯75盏,B型台灯2盏故答案为30 x;y;50y;(2)设商场应购进A型台灯x盏,销售完这批台灯可获利y元,则y=(4530)x+(705

25、0)(100 x)=15x+120 x=5x+1,即y=5x+1B型台灯的进货数量不超过A型台灯数量的3倍,100 x3x,x2k=50,y随x的增大而减小,x=2时,y取得最大值,为52+1=1875(元)答:商场购进A型台灯2盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元【点睛】本题考查了一元一次方程的应用、二元一次方程组的应用以及一次函数的应用,主要利用了一次函数的增减性,(2)题中理清题目数量关系并列式求出x的取值范围是解题的关键20、(1)详见解析;(2)80【分析】(1)根据ACD=ADC,BCD=EDC=90,可得ACB=ADE,进而运用SAS即可判定全等三角

26、形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到BAE的度数【解析】(1)根据ACD=ADC,BCD=EDC=90,可得ACB=ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到BAE的度数【详解】证明:(1)AC=AD,ACD=ADC,又BCD=EDC=90,ACB=ADE,在ABC和AED中,ABCAED(SAS);解:(2)当B=140时,E=140,又BCD=EDC=90,五边形ABCDE中,BAE=5401402902=80【点睛】考点:全等三角形的判定与性质21、(1)详见解析;(2)详见解析;(3)DF=【解析】(1

27、)先判断出ADBC,即可得出结论;(2)先判断出ODAC,进而判断出CED=ODE,判断出CDECAD,即可得出结论;(3)先求出OD,再求出CD=3,进而求出CE,AE,DE,再判断出,即可得出结论【详解】(1)连接AD,AB是O的直径,ADB=90,ADBC,AB=AC, BD=CD;(2)连接OD,DE是O的切线,ODE=90,由(1)知,BD=CD,OA=OB,ODAC,CED=ODE=90=ADC,C=C,CDECAD,CD2=CEAC;(3)AB=AC=5,由(1)知,ADB=90,OA=OB,OD=AB=,由(1)知,CD=BC=3,由(2)知,CD2=CEAC,AC=5,CE=

28、,AE=AC-CE=5-=,在RtCDE中,根据勾股定理得,DE=,由(2)知,ODAC,DF=【点睛】此题是圆的综合题,主要考查了圆的性质,等腰三角形的性质,相似三角形的判断和性质,勾股定理,判断出CDECAD是解本题的关键22、 (1) 商店购进甲种商品40件,购进乙种商品60件;(2) 应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元【解析】(1)设购进甲、乙两种商品分别为x件与y件,根据甲种商品件数+乙种商品件数=100,甲商品的总进价+乙种商品的总进价=2700,列出关于x与y的方程组,求出方程组的解即可得到x与y的值,得到购进甲、乙两种商品的件数;(2)设商店购进甲种商品a件,则购进乙种商品(100-a)件,根据甲商品的总进价+乙种商品的总进价小于等于3100,甲商品的总利润+乙商品的总利润大于等于890列出关于a的不等式组,求出不等式组的解集,得到a的取值范围,根据a为正整数得出a的值,再表示总利润W,发现W与a成一次函数关系式,且为减函数,故a取最小值时,W最大,即可求出所求的进货方案与最大利润【详解】(1)设购进甲种商品x件,购进乙商品y件,根据题意得:,解得:,答:商店购进甲种商品40件,购进乙种商品60件;(2)设商店购进甲种商品a件,则购进乙种商品(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论