版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1已知二次函数y=x2+bx9图象上A、B两点关于原点对称,若经过A点的反比例函数的解析式是y=,则该二次函数的对称轴是直线()Ax=1B
2、x=Cx=1Dx=2若分式的值为0,则x的值为()A-2B0C2D23为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m1),绘制了统计图,如图所示下面有四个推断:年用水量不超过180m1的该市居民家庭按第一档水价交费;年用水量不超过240m1的该市居民家庭按第三档水价交费;该市居民家庭年用水量的中位数在150180m1之间;该市居民家庭年用水量的众数约为110m1 其中合理的是( )ABCD4一个几何体的三视图如图所
3、示,根据图示的数据计算出该几何体的表面积()A65B90C25D855如图,在中,边上的高是( )ABCD6如图,等边ABC内接于O,已知O的半径为2,则图中的阴影部分面积为( )A B C D7如图所示,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=3,EF=4,那么线段AD与AB的比等于()A25:24B16:15C5:4D4:38如图是半径为2的半圆,点C是弧AB的中点,现将半圆如图方式翻折,使得点C与圆心O重合,则图中阴影部分的面积是( )ABC2+D29世界因爱而美好,在今年我校的“献爱心”捐款活动中,九年级三班50名学生积极加献爱心捐款活动,
4、班长将捐款情况进行了统计,并绘制成了统计图,根据图中提供的信息,捐款金额的众数和中位数分别是A20、20B30、20C30、30D20、3010点M(a,2a)在反比例函数y的图象上,那么a的值是( )A4B4C2D2二、填空题(共7小题,每小题3分,满分21分)11方程的解是_.12如图,在44正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是_13在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是_14计算:(3)02-1=_15如图,菱形ABCD的对角线
5、的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PEBC交AB于E,PFCD交AD于F,则阴影部分的面积是_16如果两个相似三角形的面积的比是4:9,那么它们对应的角平分线的比是_17如图,E是ABCD的边AD上一点,AE=12ED,CE与BD相交于点F,BD=10,那么DF=_三、解答题(共7小题,满分69分)18(10分)如图,已知AB是O上的点,C是O上的点,点D在AB的延长线上,BCD=BAC求证:CD是O的切线;若D=30,BD=2,求图中阴影部分的面积19(5分)如图1,在等腰RtABC中,BAC=90,点E在AC上(且不与点A、C重合),在ABC的外部作等腰R
6、tCED,使CED=90,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF(1)求证:AEF是等腰直角三角形;(2)如图2,将CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;(3)如图3,将CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且CED在ABC的下方时,若AB=2,CE=2,求线段AE的长20(8分)如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22时,教学楼在建筑物的墙上留下高2m的影子CE;而当光线与地面的夹角是45时,教学楼顶A在地面上的影子F与墙角C有13m的距离(B、F、C在一条直线上)求教学楼AB的高度;学校
7、要在A、E之间挂一些彩旗,请你求出A、E之间的距离(结果保留整数)21(10分)随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注,某校计划将这种学习方式应用到教育学中,从全校1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备的情况进行调查,并绘制出如下的统计图和图,根据相关信息,解答下列问题:本次接受随机抽样调查的学生人数为 ,图中m的值为 ;求本次调查获取的样本数据的众数、中位数和平均数;根据样本数据,估计该校1500名学生家庭中拥有3台移动设备的学生人数22(10分)为了传承祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答
8、题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”. (1)小明回答该问题时,仅对第二个字是选“重”还是选“穷”难以抉择,随机选择其中一个,则小明回答正确的概率是 ; (2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.九宫格23(12分)计算:(2)2+|3|2018024(14分)由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:若该公司五月份
9、的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入投入总成本)参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】设A点坐标为(a,),则可求得B点坐标,把两点坐标代入抛物线的解析式可得到关于a和b的方程组,可求得b的值,则可求得二次函数的对称轴【详解】解:A在反比例函数图象上,可设A点坐标为(a,)A、B两点关于原点对称,B点坐标为(a
10、,)又A、B两点在二次函数图象上,代入二次函数解析式可得:,解得:或,二次函数对称轴为直线x=故选D【点睛】本题主要考查二次函数的性质,待定系数法求二次函数解析式,根据条件先求得b的值是解题的关键,注意掌握关于原点对称的两点的坐标的关系2、C【解析】由题意可知:,解得:x=2,故选C.3、B【解析】利用条形统计图结合中位数和中位数的定义分别分析得出答案【详解】由条形统计图可得:年用水量不超过180m1的该市居民家庭一共有(0.25+0.75+1.5+1.0+0.5)=4(万),100%=80%,故年用水量不超过180m1的该市居民家庭按第一档水价交费,正确;年用水量超过240m1的该市居民家庭
11、有(0.15+0.15+0.05)=0.15(万),100%=7%5%,故年用水量超过240m1的该市居民家庭按第三档水价交费,故此选项错误;5万个数据的中间是第25000和25001的平均数,该市居民家庭年用水量的中位数在120-150之间,故此选项错误;该市居民家庭年用水量为110m1有1.5万户,户数最多,该市居民家庭年用水量的众数约为110m1,因此正确,故选B【点睛】此题主要考查了频数分布直方图以及中位数和众数的定义,正确利用条形统计图获取正确信息是解题关键4、B【解析】根据三视图可判断该几何体是圆锥,圆锥的高为12,圆锥的底面圆的半径为5,再利用勾股定理计算出母线长,然后求底面积与
12、侧面积的和即可【详解】由三视图可知该几何体是圆锥,圆锥的高为12,圆锥的底面圆的半径为5,所以圆锥的母线长=13,所以圆锥的表面积=52+2513=90故选B【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长也考查了三视图5、D【解析】根据三角形的高线的定义解答【详解】根据高的定义,AF为ABC中BC边上的高故选D【点睛】本题考查了三角形的高的定义,熟记概念是解题的关键6、A【解析】解:连接OB、OC,连接AO并延长交BC于H,则AHBCABC是等边三角形,BH=AB=,OH=1,OBC的面积= BCOH=,则OBA的面积=OA
13、C的面积=OBC的面积=,由圆周角定理得,BOC=120,图中的阴影部分面积=故选A点睛:本题考查的是三角形的外接圆与外心、扇形面积的计算,掌握等边三角形的性质、扇形面积公式是解题的关键7、A【解析】先根据图形翻折的性质可得到四边形EFGH是矩形,再根据全等三角形的判定定理得出RtAHERtCFG,再由勾股定理及直角三角形的面积公式即可解答【详解】1=2,3=4,2+3=90,HEF=90,同理四边形EFGH的其它内角都是90,四边形EFGH是矩形,EH=FG(矩形的对边相等),又1+4=90,4+5=90,1=5(等量代换),同理5=7=8,1=8,RtAHERtCFG,AH=CF=FN,又
14、HD=HN,AD=HF,在RtHEF中,EH=3,EF=4,根据勾股定理得HF=5,又HEEF=HFEM,EM=,又AE=EM=EB(折叠后A、B都落在M点上),AB=2EM=,AD:AB=5:=25:1故选A【点睛】本题考查的是图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,折叠以后的图形与原图形全等8、D【解析】连接OC交MN于点P,连接OM、ON,根据折叠的性质得到OP=OM,得到POM=60,根据勾股定理求出MN,结合图形计算即可.【详解】解:连接OC交MN于点P,连接OM、ON,由题意知,OCMN,且OP=PC=1,在
15、RtMOP中,OM=2,OP=1,cosPOM=,AC=,POM=60,MN=2MP=2,AOB=2AOC=120,则图中阴影部分的面积=S半圆-2S弓形MCN=22-2(-21)=2- ,故选D.【点睛】本题考查了轴对称的性质的运用、勾股定理的运用、三角函数值的运用、扇形的面积公式的运用、三角形的面积公式的运用,解答时运用轴对称的性质求解是关键.9、C【解析】分析:由表提供的信息可知,一组数据的众数是这组数中出现次数最多的数,而中位数则是将这组数据从小到大(或从大到小)依次排列时,处在最中间位置的数,据此可知这组数据的众数,中位数详解:根据右图提供的信息,捐款金额的众数和中位数分别是30,3
16、0.故选C.点睛:考查众数和中位数的概念,熟记概念是解题的关键.10、D【解析】根据点M(a,2a)在反比例函数y的图象上,可得:,然后解方程即可求解.【详解】因为点M(a,2a)在反比例函数y的图象上,可得:,解得:,故选D.【点睛】本题主要考查反比例函数图象的上点的特征,解决本题的关键是要熟练掌握反比例函数图象上点的特征.二、填空题(共7小题,每小题3分,满分21分)11、.【解析】根据解分式方程的步骤依次计算可得.【详解】解:去分母,得:,解得:,当时,所以是原分式方程的解,故答案为:.【点睛】本题主要考查解分式方程,解题的关键是熟练掌握解分式方程的步骤:去分母;求出整式方程的解;检验;
17、得出结论.12、【解析】如图,有5种不同取法;故概率为 .13、 【解析】根据随机事件概率大小的求法,找准两点:符合条件的情况数目;全部情况的总数二者的比值就是其发生的概率的大小【详解】解:在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是故答案为:【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=14、12 【解析】分别利用零指数幂a0=1(a0),负指数幂a-p=1ap(a0)化简计算即可.【详解】解:(3)02-1=1-12=12故答案为:1
18、2.【点睛】本题考查了零指数幂和负整数指数幂的运算,掌握运算法则是解题关键15、【解析】根据题意可得阴影部分的面积等于ABC的面积,因为ABC的面积是菱形面积的一半,根据已知可求得菱形的面积则不难求得阴影部分的面积【详解】设AP,EF交于O点,四边形ABCD为菱形,BCAD,ABCD.PEBC,PFCD,PEAF,PFAE.四边形AEFP是平行四边形SPOF=SAOE.即阴影部分的面积等于ABC的面积ABC的面积等于菱形ABCD的面积的一半,菱形ABCD的面积=ACBD=5,图中阴影部分的面积为52=16、2:1【解析】先根据相似三角形面积的比是4:9,求出其相似比是2:1,再根据其对应的角平
19、分线的比等于相似比,可知它们对应的角平分线比是2:1故答案为2:1.点睛:本题考查的是相似三角形的性质,即相似三角形对应边的比、对应高线的比、对应角平分线的比、周长的比都等于相似比;面积的比等于相似比的平方17、4【解析】AE=12ED,AE+ED=AD,ED=23AD,四边形ABCD是平行四边形,AD=BC,AD/BC,DEFBCF,DF:BF=DE:BC=2:3,DF+BF=BD=10,DF=4,故答案为4.三、解答题(共7小题,满分69分)18、(1)证明见解析;(2)阴影部分面积为【解析】【分析】(1)连接OC,易证BCD=OCA,由于AB是直径,所以ACB=90,所以OCA+OCB=
20、BCD+OCB=90,CD是O的切线;(2)设O的半径为r,AB=2r,由于D=30,OCD=90,所以可求出r=2,AOC=120,BC=2,由勾股定理可知:AC=2,分别计算OAC的面积以及扇形OAC的面积即可求出阴影部分面积.【详解】(1)如图,连接OC,OA=OC,BAC=OCA,BCD=BAC,BCD=OCA,AB是直径,ACB=90,OCA+OCB=BCD+OCB=90OCD=90OC是半径,CD是O的切线(2)设O的半径为r,AB=2r,D=30,OCD=90,OD=2r,COB=60r+2=2r,r=2,AOC=120BC=2,由勾股定理可知:AC=2,易求SAOC=21=S扇
21、形OAC=,阴影部分面积为.【点睛】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含30度的直角三角形的性质,等边三角形的性质等知识,熟练掌握和灵活运用相关知识是解题的关键.19、(1)证明见解析;(2)证明见解析;(3)4. 【解析】试题分析:(1)依据AE=EF,DEC=AEF=90,即可证明AEF是等腰直角三角形;(2)连接EF,DF交BC于K,先证明EKFEDA,再证明AEF是等腰直角三角形即可得出结论;(3)当AD=AC=AB时,四边形ABFD是菱形,先求得EH=DH=CH=,RtACH中,AH=3,即可得到AE=AH+EH=4试题解析:解:(1)如图1四边形ABFD是平行四边形
22、,AB=DFAB=AC,AC=DFDE=EC,AE=EFDEC=AEF=90,AEF是等腰直角三角形;(2)如图2,连接EF,DF交BC于K四边形ABFD是平行四边形,ABDF,DKE=ABC=45,EKF=180DKE=135,EK=EDADE=180EDC=18045=135,EKF=ADEDKC=C,DK=DCDF=AB=AC,KF=AD在EKF和EDA中,EKFEDA(SAS),EF=EA,KEF=AED,FEA=BED=90,AEF是等腰直角三角形,AF=AE(3)如图3,当AD=AC=AB时,四边形ABFD是菱形,设AE交CD于H,依据AD=AC,ED=EC,可得AE垂直平分CD,
23、而CE=2,EH=DH=CH=,RtACH中,AH=3,AE=AH+EH=4点睛:本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、菱形的性质以及勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点20、(1)2m(2)27m【解析】(1)首先构造直角三角形AEM,利用,求出即可(2)利用RtAME中,求出AE即可【详解】解:(1)过点E作EMAB,垂足为M设AB为x在RtABF中,AFB=45,BF=AB=x,BC=BFFC=x1在RtAEM中,AEM=22,AM=ABBM=ABCE=x2,又,解得:x2教
24、学楼的高2m(2)由(1)可得ME=BC=x+12+1=3在RtAME中,AE=MEcos22A、E之间的距离约为27m21、()50、31;()4;3;3.1;()410人【解析】()利用家庭中拥有1台移动设备的人数除以其所占百分比即可得调查的学生人数,将拥有4台移动设备的人数除以总人数即可求得m的值;()根据众数、中位数、加权平均数的定义计算即可;()将样本中拥有3台移动设备的学生人数所占比例乘以总人数1500即可求解【详解】解:()本次接受随机抽样调查的学生人数为: 50(人),10031%,图中m的值为31.故答案为50、31;()这组样本数据中,4出现了16次,出现次数最多,这组数据
25、的众数为4;将这组数据从小到大排列,其中处于中间的两个数均为3,有3,这组数据的中位数是3;由条形统计图可得3.1,这组数据的平均数是3.1()150018%410(人)答:估计该校学生家庭中;拥有3台移动设备的学生人数约为410人【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小22、(1);(2) 【解析】试题分析:(1)利用概率公式直接计算即可;(2)画出树状图得到所有可能的结果,再找到回答正确的数目即可求出小丽回答正确的概率试题解析:(1)对第二个字是选“重”还是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度安全生产标准化应急预案演练合同
- 二零二五年度华为智能安防系统设计与实施合同2篇
- 2025版房地产项目管理员安全生产责任制及实施标准合同3篇
- 2025年智能交通信号灯控制系统采购及安装合同
- 二零二五年度房屋租赁保险合同标准版2篇
- 日历上的科学课件
- 二零二五年度快递快递业务碳排放管理及减排合同3篇
- 二零二五年度室内装饰材料绿色环保认证采购合同2篇
- 2025年华东师大版七年级化学下册阶段测试试卷含答案
- 二零二五年度新能源项目开发与转让合同2篇
- 2024年度危废物品转运服务协议版
- 2023年辅警招聘公安基础知识必刷题库及答案
- 全过程造价咨询项目保密及廉政执业措施
- 《机加工操作员绩效考核方案》-企业管理
- 光是怎样传播的说课稿
- 劳动技能实操指导(劳动教育)学习通超星期末考试答案章节答案2024年
- nba球星乔丹课件
- 离婚协议书模板可打印(2024版)
- 重庆三峰环境集团股份有限公司招聘笔试题库2024
- 中国式现代化为主题的论文3000字(1) (1)全文
- YB2防爆电机使用说明书
评论
0/150
提交评论