版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1在RtABC中,如果A=,那么线段AC的长可表示为( )A;B;C;D2下列方程中,关于x的一元二次方程是()Ax2x(x+3)0Bax2+bx+c0Cx22x30Dx22y103在同一坐标系中,一次函数y=ax+1与二次函数y=x2+a的图像
2、可能是( )ABCD4某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A168(1x)2108B168(1x2)108C168(12x)108D168(1+x)21085如图,在RtABC中,ACB=90,CDAB,垂足为D,AF平分CAB,交CD于点E,交CB于点F,若AC=3,AB=5,则CE的长为()ABCD6已知AB、CD是O的两条弦,ABCD,AB6,CD8,O的半径为5,则AB与CD的距离是()A1B7C1或7D无法确定7把抛物线向下平移1个单位再向右平移一个单位所得到的的函数抛物线的解析式是( )ABCD
3、8如图,在ABC中,DE/BC,S梯形BCED8,则SABC是( )A13B12C10D99如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:;,其中正确的是( )ABCD10下列四张印有汽车品牌标志图案的卡片中,是中心对称图形的卡片是()ABCD11在平面直角坐标系中,点,过第四象限内一动点作轴的垂线,垂足为,且,点、分别在线段和轴上运动,则的最小值是( )ABCD12如图,AB是O的直径,点C,D在O上,且,OD绕着点O顺时针旋转,连结CD交直线AB于点E,当DE=OD时,的大小不可能为( )ABCD二、填空题(每题4分,共24分)13计算:2cos3
4、0+tan454sin260_14若最简二次根式与是同类根式,则_.15已知二次函数y=ax2+bx+c(a0)的图象如图,有下列6个结论:abc0;ba+c; 4a+2b+c0;2a+b+c0;0;2a+b=0;其中正确的结论的有_16如图,过原点的直线与反比例函数()的图象交于,两点,点在第一象限点在轴正半轴上,连结交反比例函数图象于点为的平分线,过点作的垂线,垂足为,连结若是线段中点,的面积为4,则的值为_17在RtABC中,C90,tanA,ABC的周长为18,则SABC_18把二次函数变形为的形式,则_三、解答题(共78分)19(8分)数学兴趣小组对矩形面积为9,其周长m的范围进行了
5、探究兴趣小组的同学们已经能用“代数”的方法解决,以下是他们从“图形”的角度进行探究的部分过程,请把过程补充完整(1)建立函数模型设矩形相邻两边的长分别为x,y,由矩形的面积为9,得xy9,即y;由周长为m,得2(x+y)m,即yx+满足要求的(x,y)应是两个函数图象在第 象限内交点的坐标(2)画出函数图象函数y(x0)的图象如图所示,而函数yx+的图象可由直线yx平移得到,请在同一直角坐标系中画出直线yx(3)平移直线yx,观察函数图象当直线平移到与函数y(x0)的图象有唯一交点(3,3)时,周长m的值为 ;在直线平移过程中,直线与函数y(x0)的图象交点个数还有哪些情况?请写出交点个数及对
6、应的周长m的取值范围(4)得出结论面积为9的矩形,它的周长m的取值范围为 20(8分)如图,E是正方形ABCD的CD边上的一点,BFAE于F,(1)求证:ADEBFA;(2)若正方形ABCD的边长为2,E为CD的中点,求BFA的面积,21(8分)已知关于x的一元二次方程x2+2x+m=1(1)当m=3时,判断方程的根的情况;(2)当m=3时,求方程的根22(10分)如图,在网格纸中,、都是格点,以为圆心,为半径作圆,用无刻度的直尺完成以下画图:(不写画法)(1)在圆中画圆的一个内接正六边形;(2)在图中画圆的一个内接正八边形.23(10分)如图,已知O的半径为5 cm,弦AB的长为8 cm,P
7、是AB延长线上一点,BP2 cm,求cosP的值24(10分)如图,在ABC中,D为AC边上一点,DBCA (1)求证:BDCABC;(2)若BC4,AC8,求CD的长25(12分)同学张丰用一张长18cm、宽12cm矩形纸片折出一个菱形,他沿矩形的对角线AC折出CAEDAC,ACFACB的方法得到四边形AECF(如图)(1)证明:四边形AECF是菱形;(2)求菱形AECF的面积26已知:平行四边形ABCD的两边AB,AD的长是关于x的方程x2mx+0的两个实数根(1)m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么ABCD的周长是多少?参考答案一、选择题(每题
8、4分,共48分)1、B【分析】根据余弦函数是邻边比斜边,可得答案【详解】解:由题意,得,故选:【点睛】本题考查了锐角三角函数的定义,利用余弦函数的定义是解题关键2、C【分析】一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数由这四个条件对四个选项进行验证,满足这四个条件者为正确答案【详解】解:A、x2x(x+3)0,化简后为3x0,不是关于x的一元二次方程,故此选项不合题意;B、ax2+bx+c0,当a0时,不是关于x的一元二次方程,故此选项不合题意;C、x22x30是关于x的一元二次方程,故此选项符合题意;D、x22y10
9、含有2个未知数,不是关于x的一元二次方程,故此选项不合题意;故选:C【点睛】此题主要考查了一元二次方程的定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”3、A【分析】本题可先由一次函数y=ax+1图象得到字母系数的正负,再与二次函数y=x2+a的图象相比较看是否一致【详解】解:A、由抛物线y轴的交点在y轴的负半轴上可知,a0,由直线可知,a0,正确;B、由抛物线与y轴的交点在y轴的正半轴上可知,a0,二次项系数为负数,与二次函数y=x2+a矛盾,错误;C、由抛物线与y轴的交点在y轴的负半轴上可知
10、,a0,由直线可知,a0,错误; D、由直线可知,直线经过(0,1),错误,故选A【点睛】考核知识点:一次函数和二次函数性质.4、A【分析】设每次降价的百分率为x,根据降价后的价格=降价前的价格(1-降价的百分率),则第一次降价后的价格是168(1-x),第二次后的价格是168(1-x)2,据此即可列方程求解【详解】设每次降价的百分率为x,根据题意得:168(1-x)2=1故选A【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可5、A【分析】根据三角形的内角和定理得出CAF+CFA=90,FAD+AED=90
11、,根据角平分线和对顶角相等得出CEF=CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案【详解】过点F作FGAB于点G,ACB=90,CDAB,CDA=90,CAF+CFA=90,FAD+AED=90,AF平分CAB,CAF=FAD,CFA=AED=CEF,CE=CF,AF平分CAB,ACF=AGF=90,FC=FG,B=B,FGB=ACB=90,BFGBAC,AC=3,AB=5,ACB=90,BC=4,FC=FG,解得:FC=,即CE的长为故选A【点睛】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出CEF=CFE
12、6、C【分析】由于弦AB、CD的具体位置不能确定,故应分两种情况进行讨论:弦AB和CD在圆心同侧;弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】解:当弦AB和CD在圆心同侧时,如图,过点O作OFCD,垂足为F,交AB于点E,连接OA,OC,ABCD,OEAB,AB8,CD6,AE4,CF3,OAOC5,由勾股定理得:EO3,OF4,EFOFOE1;当弦AB和CD在圆心异侧时,如图,过点O作OEAB于点E,反向延长OE交AD于点F,连接OA,OC,EFOF+OE1,所以AB与CD之间的距离是1或1故选:C【点睛】本题考查了垂径定理:垂直于弦的直径平分弦,并且平
13、分弦所对的弧. 也考查了勾股定理及分类讨论的思想的应用.7、B【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答即可【详解】解:抛物线向下平移1个单位,得:,再向右平移1个单位,得:,即:,故选B.【点睛】主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式8、D【分析】由DEBC,可证ADEABC,根据相似三角形的面积比等于相似比的平方,求ADE的面积,再加上BCED的面积即可【详解】解:DEBC,ADEABC,S梯形BCED8,故选:D【点睛】本题考查了相似三角形的判定与性质关键是利用平行线得相似,利用相似三角形的面积的性质求解9、
14、C【解析】试题解析:和的底分别相等,高 也相等,所以它们的面积也相等,故正确.和的底分别相等,高也相等,所以它们的面积也相等,并不是倍的关系.故错误.由于是的中点,所以和的相似比为,所以它们的面积之比为.故错误.和的底相等,高和 则是的关系,所以它们的面积之比为.故正确.综上所述,符合题意的有和.故选C.10、C【解析】试题分析:由中心对称图形的概念可知,这四个图形中只有第三个是中心对称图形,故答案选C考点:中心对称图形的概念11、B【分析】先求出直线AB的解析式,再根据已知条件求出点C的运动轨迹,由一次函数的图像及性质可知:点C的运动轨迹和直线AB平行,过点C作CEAB交x轴于P,交AB于E
15、,过点M(0,-3)作MNAB于N根据垂线段最短和平行线之间的距离处处相等,可得此时CE即为的最小值,且MN=CE,然后利用锐角三角函数求MN即可求出CE.【详解】解:设直线AB的解析式为y=axb(a0)将点,代入解析式,得解得:直线AB的解析式为设C点坐标为(x,y)CD=x,OD=-y整理可得:,即点C的运动轨迹为直线的一部分由一次函数的性质可知:直线和直线平行, 过点C作CEAB交x轴于P,交AB于E,过点M(0,-3)作MNAB于N根据垂线段最短和平行线之间的距离处处相等,可得此时CE即为的最小值,且MN=CE,如图所示在RtAOB中,AB=,sinBAO=在RtAMN中,AM=6,
16、sinMAN=CE=MN=,即的最小值是.故选:B.【点睛】此题考查的是一次函数的图像及性质、动点问题和解直角三角形,掌握用待定系数法求一次函数的解析式、一次函数的图像及性质、垂线段最短和平行线之间的距离处处相等是解决此题的关键.12、C【分析】分三种情况求解即可:当点D与点C在直径AB的异侧时;当点D在劣弧BC上时;当点D在劣弧AC上时.【详解】如图,连接OC,设,则,在中, ,;如图,连接OC,设,则,在中, ,;(3)如图,设,则,由外角可知, ,故选C.【点睛】本题考查了圆的有关概念,旋转的性质,等腰三角形的性质,三角形外角的性质,以及分类讨论的数学思想,分类讨论是解答本题的关键.二、
17、填空题(每题4分,共24分)13、1【分析】首先计算乘方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可【详解】解:2cos30+tan454sin2602+143+14431故答案为:1【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行另外,有理数的运算律在实数范围内仍然适用14、1【分析】根据同类二次根式的定义可得a+2=5a-2,即可求出a值.【详解】最简二次根式与是同类根式,a+2=5a-2,解得:a=1.
18、故答案为:1【点睛】本题考查了同类二次根式:把各二次根式化为最简二次根式后若被开方数相同,那么这样的二次根式叫同类二次根式;熟记定义是解题关键.15、【分析】由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,然后根据对称轴位置确定b的符号,可对作判断;令x1,则y abc,根据图像可得:abc1,进而可对作判断;根据对称性可得:当x2时,y1,可对对作判断;根据2ab1和c1可对作判断;根据图像与x轴有两个交点可对作判断;根据对称轴为:x1可得:ab,进而可对判作断【详解】解:该抛物线开口方向向下,a1抛物线对称轴在y轴右侧,a、b异号,b1;抛物线与y轴交于正半轴,c
19、1,abc1;故正确;令x1,则y abc1,acb,故错误;根据抛物线的对称性知,当x2时,y1,即4a2bc1;故错误;对称轴方程x1,b2a,2ab1,c1,2abc1,故正确;抛物线与x轴有两个交点,ax2bxc1由两个不相等的实数根,1,故正确由可知:2ab1,故正确综上所述,其中正确的结论的有:故答案为:【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴求2a与b的关系,以及二次函数与方程之间的转换,二次函数最值的熟练运用16、【分析】连接OE,CE,过点A作AFx轴,过点D作DHx轴,过点D作DGAF;由AB经过原点,则A与B关于原点对称,再由BEAE,AE为BAC的平分
20、线,可得ADOE,进而可得SACE=SAOC;设点A(m, ),由已知条件D是线段AC中点,DHAF,可得2DH=AF,则点D(2m,),证明DHCAGD,得到SHDC=SADG,所以SAOC=SAOF+S梯形AFHD+SHDC=k+k+=8;即可求解;【详解】解:连接OE,CE,过点A作AFx轴,过点D作DHx轴,过点D作DGAF,过原点的直线与反比例函数y=(k0)的图象交于A,B两点,A与B关于原点对称,O是AB的中点,BEAE,OE=OA,OAE=AEO,AE为BAC的平分线,DAE=AEO,ADOE,SACE=SAOC,D是线段AC中点,的面积为4,AD=DC,SACE=SAOC=8
21、,设点A(m, ),D是线段AC中点,DHAF,2DH=AF,点D(2m,),CHGD,AGDH,ADG=DCH,DAG=CDH,在AGD和DHC中, SHDC=SADG,SAOC=SAOF+S梯形AFHD+SHDC=k+(DH+AF)FH+SHDC=k+k+=8;k=8,k= .故答案为.【点睛】本题考查反比例函数k的意义;借助直角三角形和角平分线,将ACE的面积转化为AOC的面积是解题的关键17、 【解析】根据正切函数是对边比邻边,可得a、b的值,根据勾股定理,可得c根据周长公式,可得x的值,根据三角形的面积公式,可得答案【详解】由在RtABC中,C=90,tanA=,得a=5x,b=12
22、x由勾股定理,得c=13x由三角形的周长,得5x+12x+13x=18,解得x=,a=3,b=SABC=ab=3=故答案为:【点睛】本题考查了解直角三角形,利用正切函数表示出a=5x,b=12x是解题关键18、【分析】利用配方法将二次函数变成顶点式即可.【详解】,h=2,k=-9,即h+k=2-9=-7.故答案为:-7.【点睛】本题考查二次函数顶点式的性质,关键在于将一般式转换为顶点式.三、解答题(共78分)19、(1)一;(2)见解析;(3)1;0个交点时,m1;1个交点时,m1; 2个交点时,m1;(4)m1【分析】(1)x,y都是边长,因此,都是正数,即可求解;(2)直接画出图象即可;(
23、3)在直线平移过程中,交点个数有:0个、1个、2个三种情况,联立y和yx+整理得:mx+90,即可求解;(4)由(3)可得【详解】解:(1)x,y都是边长,因此,都是正数,故点(x,y)在第一象限,故答案为:一;(2)图象如下所示:(3)当直线平移到与函数y(x0)的图象有唯一交点(3,3)时,由yx+得:33+m,解得:m1,故答案为1;在直线平移过程中,交点个数有:0个、1个、2个三种情况,联立y和yx+并整理得:xmx+90,m49,0个交点时,m1;1个交点时,m1; 2个交点时,m1;(4)由(3)得:m1,故答案为:m1【点睛】本题是反比例函数综合运用题,涉及到一次函数、一元二次方
24、程、函数平移等知识点,此类探究题,通常按照题设条件逐次求解即可20、(1)见详解;(2)【分析】(1)根据两角相等的两个三角形相似,即可证明ADEBFA;(2)利用三角形的面积比等于相似比的平方,即可解答【详解】(1)证明:BFAE于点F,四边形ABCD为正方形,ADE和BFA均为直角三角形,DCAB,DEA=FAB,ADEBFA;(2)解:AD=2,E为CD的中点,DE=1,AE=,ADEBFA,SADE=12=1,SBFA=SADE=【点睛】本题主要考查三角形相似的性质与判定,熟记相似三角形的判定是解决第(1)小题的关键;第(2)小题中,利用相似三角形的面积比是相似比的平方是解决此题的关键
25、21、(1)原方程无实数根.(2)x1=1,x2=3.【分析】(1)判断一元二次方程根的情况,只要看根的判别式=b24ac的值的符号即可判断:当1,方程有两个不相等的实数根;当=1,方程有两个相等的实数根;当1,方程没有实数根.(2)把m的值代入方程,用因式分解法求解即可.【详解】解:(1)当m=3时,=b24ac=2243=81,原方程无实数根.(2)当m=3时,原方程变为x2+2x3=1,(x1)(x+3)=1,x1=1,x+3=1.x1=1,x2=3.22、(1)见解析;(2)见解析【分析】(1)设AO的延长线与圆交于点D,根据正六边形的性质,点D即为正六边形的一个顶点,且正六边形的边长
26、等于圆的半径,根据垂直平分线的性质即可确定其它的顶点;(2)先求出内接八边形的中心角,然后根据正方形的性质即可找到各个顶点【详解】(1)设AO的延长线与圆交于点D, 根据圆的内接正六边形的性质,点D即为正六边形的一个顶点,且正六边形的边长等于圆的半径,即OB=AB,故在图中找到AO的中垂线与圆的交点即为正六边形的顶点B和F;同理:在图中找到OD的中垂线与圆的交点即为正六边形的顶点C和E,连接AB、BC、CD、DE、EF、FA,如图,正六边形即为所求(2)圆的内接八边形的中心角为3608=45,而正方形的对角线与边的夹角也为45在如图所示的正方形OMNP中,连接对角线ON并延长,交圆于点B,此时
27、AON=45;NOP=45,OP的延长线与圆的交点即为点C同理,即可确定点D、E、F、G、H的位置,顺次连接,如图,正八边形即为所求【点睛】此题考查的是画圆的内接正六边形和内接正八边形,掌握圆的内接正六边形和内接正八边形的性质和中心角的求法是解决此题的关键23、【分析】作OCAB于C点,根据垂径定理可得AC、CP的长度,在OCA和OCP中,运用勾股定理分别求出OC、OP的长度,即可算得的值【详解】解:作OCAB于C点,根据垂径定理,ACBC4cm,CP4+2=6cm,在OCA中,根据勾股定理,得,在OCP中,根据勾股定理,得,故【点睛】本题主要考察了垂径定理、勾股定理、求角的余弦值,解题的关键在于运用勾股定理求出图形中部分线段的长度24、(1)证明见解析;(1)CD1【解析】(1)根据相似三角形的判定得出即可;(1)根据相似得出比例式,代入求出即可【详解】解:(1)DBCA,BCDACB,BDCABC;(1)BDCABC,BC4,AC8,CD1【点睛】本题考查的知识点是相似三
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中考数学二轮复习压轴题培优专练专题16 函数的图像变换问题(原卷版)
- 2024年版云服务外包合同
- 2024年版学生宿舍共住规则3篇
- 2024年智能化生产车间承包与升级合同范本3篇
- 物联网应用课程设计论文
- 2024年度大白智能仓储管理系统安装与数据安全协议范本3篇
- 物流专业课程设计
- 2024-2025学年人教部编版六年级上语文寒假作业(七)
- 2024年父母子女共同财产分割协议3篇
- 火床锅炉课程设计
- 国开电大电气传动与调速系统形考任务1-4答案
- 经口内镜下食管肌层切开术的护理配合
- FDMA卫星通信网络系统
- 学校学生心理危机干预实施方案
- 住院医师规范化培训临床实践能力结业考核超声诊断报告评分表
- 2022年甘肃公务员考试《申论》真题套卷(省级卷)
- GB/T 16453.4-2008水土保持综合治理技术规范小型蓄排引水工程
- GB/T 11352-2009一般工程用铸造碳钢件
- 《必修上第二单元大单元教学设计》教案【高中语文必修上册】
- INTERTAN手术操作课件
- 2022年新教科版五年级上册科学知识点(共三套)
评论
0/150
提交评论