版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题3分,共30分)1如图,是的内接正十边形的一边,平分交于点,则下列结
2、论正确的有( );A1个B2个C3个D4个2已知二次函数yax2+bx+c(a0)经过点M(1,2)和点N(1,2),则下列说法错误的是()Aa+c0B无论a取何值,此二次函数图象与x轴必有两个交点,且函数图象截x轴所得的线段长度必大于2C当函数在x时,y随x的增大而减小D当1mn0时,m+n3已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x2时,y随x的增大而增大,且-2x1时,y的最大值为9,则a的值为A1或B-或CD14要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5,6,9,另一个三角形的最长边长为4.5,则它的最短边长是( )ABCD5如图所示是滨河公
3、园中的两个物体一天中四个不同时刻在太阳光的照射下落在地面上的影子,按照时间的先后顺序排列正确的是( )A(3)(4)(1)(2)B(4)(3)(1)(2)C(4)(3)(2)(1)D(2)(4)(3)(1)6如图,在矩形ABCD中,点E是边BC的中点,AEBD,垂足为F,则sinBDE的值是 ( )ABCD7已知一个矩形的面积为24cm2,其长为ycm,宽为xcm,则y与x之间的函数关系的图象大致是ABCD8如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k0)与反比例函数y2=(c是常数,且c0)的图象相交于A(3,2),B(2,3)两点,则不等式y1y2的解集是()A
4、3x2Bx3或x2C3x0或x2D0 x29在单词probability(概率)中任意选择一个字母,选中字母“i”的概率是()ABCD10如图,二次函数的图象过点,下列说法:;若是抛物线上的两点,则;当时,其中正确的个数为( )A4B3C2D1二、填空题(每小题3分,共24分)11已知:如图,在平行四边形中,对角线、相较于点,在不添加任何辅助线的情况下,请你添加一个条件_(只添加一个即可),使平行四边形成为矩形12从地面竖直向上抛出一小球,小球离地面的高度h(米)与小球运动时间t(秒)之间关系是h=30t5t2(0t6),则小球从抛出后运动4秒共运动的路径长是_米13二次函数的最大值是_14如
5、图,利用我们现在已经学过的圆和锐角三角函数的知识可知,半径 r 和圆心角及其所对的弦长 l之间的关系为,从而,综合上述材料当时,_15如图,在ABC中,DEBC,则_16工厂质检人员为了检测其产品的质量,从同一批次共1000件产品中随机抽取50件进行检检测出次品1件,由此估计这一批产品中的次品件数是_17如图,若一个半径为1的圆形纸片在边长为6的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片能接触到的最大面积为_18如图,在平面直角坐标系中,抛物线与轴交于点,过点作轴的平行线交抛物线于点为抛物线的顶点若直线交直线于点,且为线段的中点,则的值为_三、解答题(共66分)19(10分)如图,
6、抛物线与轴交于两点,与轴交于点,且.直线与抛物线交于两点,与轴交于点,点是抛物线的顶点,设直线上方的抛物线上的动点的横坐标为(1)求该抛物线的解析式及顶点的坐标(2)连接,直接写出线段与线段的数量关系和位置关系(3)连接,当为何值时?(4)在直线上是否存在一点,使为等腰直角三角形?若存在,请直接写出点的坐标;若不存在,请说明理由20(6分)如图,直线l的解析式为yx,反比例函数y(x0)的图象与l交于点N,且点N的横坐标为1(1)求k的值;(2)点A、点B分别是直线l、x轴上的两点,且OAOB10,线段AB与反比例函数图象交于点M,连接OM,求BOM的面积21(6分)为了备战初三物理、化学实验
7、操作考试,某校对初三学生进行了模拟训练,物理、化学各有3个不同的操作实验题目,物理题目用序号、表示,化学题目用字母a、b、c表示,测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定,第一次抽签确定物理实验题目,第二次抽签确定化学实验题目(1)小李同学抽到物理实验题目这是一个 事件(填“必然”、“不可能”或“随机”)(2)小张同学对物理的、和化学的c号实验准备得较好,请用画树形图(或列表)的方法,求他同时抽到两科都准备得较好的实验题目的概率22(8分)如图,A,B,C是O 上的点,ACBC,ODOE求证:CDCE23(8分)如图,等边的边长为8,的半径为,点从点开始,在的边上沿方向运动(
8、1)从点出发至回到点,与的边相切了 次;(2)当与边相切时,求的长度24(8分)在平面直角坐标系xOy中,抛物线()(1)写出抛物线顶点的纵坐标 (用含a的代数式表示);(2)若该抛物线与x轴的两个交点分别为点A和点B,且点A在点B的左侧,AB=1求a的值;记二次函数图象在点A,B之间的部分为W(含点A和点B),若直线()经过(1,-1),且与图形W有公共点,结合函数图象,求b的取值范围25(10分)从三角形一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线
9、.(1)如图1,在ABC中,A=40,B=60,当BCD=40时,证明:CD为ABC的完美分割线.(2)在ABC中,A=48,CD是ABC的完美分割线,且ACD是以AC为底边的等腰三角形,求ACB的度数.(3)如图2,在ABC中,AC=2,BC=2,CD是ABC的完美分割线,ACD是以CD为底边的等腰三角形,求CD的长.26(10分)解方程:(1)x(2x1)+2x10(2)3x26x20参考答案一、选择题(每小题3分,共30分)1、C【分析】,根据已知把ABD,CBD,A角度确定相等关系,得到等腰三角形证明腰相等即可;通过证ABCBCD,从而确定是否正确,根据AD=BD=BC,即 解得BC=
10、AC,故正确.【详解】BC是A的内接正十边形的一边,因为AB=AC,A=36,所以ABC=C=72,又因为BD平分ABC交AC于点D,ABD=CBD=ABC=36=A,AD=BD,BDC=ABD+A=72=C,BC=BD,BC=BD=AD,正确;又ABD中,AD+BDAB2ADAB, 故错误.根据两角对应相等的两个三角形相似易证ABCBCD,又AB=AC,故正确,根据AD=BD=BC,即 ,解得BC=AC,故正确,故选C【点睛】本题主要考查圆的几何综合,解决本题的关键是要熟练掌握圆的基本性质和几何图形的性质.2、C【分析】根据二次函数的图象和性质对各项进行判断即可【详解】解:函数经过点M(1,
11、2)和点N(1,2),ab+c2,a+b+c2,a+c0,b2,A正确;ca,b2,yax22xa,4+4a20,无论a为何值,函数图象与x轴必有两个交点,x1+x2,x1x21,|x1x2|22,B正确;二次函数yax2+bx+c(a0)的对称轴x,当a0时,不能判定x时,y随x的增大而减小;C错误;1mn0,a0,m+n0,0,m+n;D正确,故选:C【点睛】本题考查了二次函数的问题,掌握二次函数的图象和性质是解题的关键3、D【解析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a0,然后由-2x1时,y的最大值为9,可得x=1时,y=9,即可求出a【详解】二次函数y=a
12、x2+2ax+3a2+3(其中x是自变量),对称轴是直线x=-=-1,当x2时,y随x的增大而增大,a0,-2x1时,y的最大值为9,x=1时,y=a+2a+3a2+3=9,3a2+3a-6=0,a=1,或a=-2(不合题意舍去)故选D【点睛】本题考查了二次函数的性质,二次函数y=ax2+bx+c(a0)的顶点坐标是(-,),对称轴直线x=-,二次函数y=ax2+bx+c(a0)的图象具有如下性质:当a0时,抛物线y=ax2+bx+c(a0)的开口向上,x-时,y随x的增大而减小;x-时,y随x的增大而增大;x=-时,y取得最小值,即顶点是抛物线的最低点当a0时,抛物线y=ax2+bx+c(a
13、0)的开口向下,x-时,y随x的增大而增大;x-时,y随x的增大而减小;x=-时,y取得最大值,即顶点是抛物线的最高点4、B【分析】根据题意可得出两个三角形相似,利用最长边数值可求出相似比,再用三角形的最短边乘以相似比即可【详解】解:由题意可得出:两个三角形的相似比为:,所以另一个三角形最短边长为:故选:B【点睛】本题考查的知识点是相似三角形的相似比,根据题目求出两个三角形的相似比是解此题的关键5、C【解析】试题分析:根据平行投影的特点和规律可知,(3),(4)是上午,(1),(2)是下午,根据影子的长度可知先后为(4)(3)(2)(1)故选C考点:平行投影6、C【分析】由矩形的性质可得ABC
14、D,ADBC,ADBC,可得BECEBCAD,由全等三角形的性质可得AEDE,由相似三角形的性质可得AF2EF,由勾股定理可求DF的长,即可求sinBDE的值【详解】四边形ABCD是矩形ABCD,ADBC,ADBC点E是边BC的中点,BECEBCAD,ABCD,BECE,ABCDCB90ABEDCE(SAS)AEDEADBCADFEBF2AF2EF,AE3EFDE, sinBDE,故选C【点睛】本题考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,解直角三角形的运用,熟练运用相似三角形的判定和性质是本题的关键7、D【详解】根据题意有:xy=24;且根据x,y实际意义x
15、、y应大于0,其图象在第一象限故选D8、C【解析】一次函数y1=kx+b落在与反比例函数y2=图象上方的部分对应的自变量的取值范围即为所求【详解】一次函数y1=kx+b(k、b是常数,且k0)与反比例函数y2=(c是常数,且c0)的图象相交于A(3,2),B(2,3)两点,不等式y1y2的解集是3x0或x2,故选C【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键9、A【解析】字母“i”出现的次数占字母总个数的比即为选中字母“i”的概率.【详解】解:共有11个字母,每个字母出现的可能性是相同的,字母i出现两次,其概率为故选:A【点睛】本题考查简单事件的概率,利用概率公式
16、求解是解答此题的关键.10、B【分析】根据二次函数的性质对各项进行判断即可【详解】A.函数图象过点,对称轴为,可得,正确;B.,当,正确;C.根据二次函数的对称性,的纵坐标等于的纵坐标,所以,错误;D.由图象可得,当时,正确;故答案为:B【点睛】本题考查了二次函数的问题,掌握二次函数的图象以及性质是解题的关键二、填空题(每小题3分,共24分)11、或(等,答案不唯一)【分析】矩形是特殊的平行四边形,矩形有而平行四边形不具有的性质是:矩形的对角线相等,矩形的四个内角是直角;可针对这些特点来添加条件【详解】解:若使ABCD变为矩形,可添加的条件是:ACBD;(对角线相等的平行四边形是矩形)ABC9
17、0等(有一个角是直角的平行四边形是矩形)故答案为:ACBD或(ABC90等)【点睛】此题主要考查的是矩形的判定方法,熟练掌握矩形和平行四边形的联系和区别是解答此题的关键12、1【分析】根据题目中的函数解析式可以求得h的最大值,从而可以求得小球从抛出后运动4秒共运动的路径长【详解】解:h30t5t25(t3)245(0t6),当t3时,h取得最大值,此时h45,小球从抛出后运动4秒共运动的路径长是:4545(304542)1(米),故答案为1【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,求出相应的路径的长13、1【分析】题目所给形式是二次函数的顶点式,易知其顶点坐标是(5,1),也就
18、是当x5时,函数有最大值1【详解】解:,此函数的顶点坐标是(5,1)即当x5时,函数有最大值1故答案是:1【点睛】本题考查了二次函数的最值,解题关键是掌握二次函数顶点式,并会根据顶点式求最值14、【分析】如图所示,AOB=,OA=r,AB=l,AOC=BOC=,根据,设AB=l=2a,OA =r=3a,根据等量代换得出BOC=BAE=,求出BE,利用勾股定理求出AE,即可表达出,代入计算即可【详解】解:如图所示,AOB=,OA=r,AB=l,AOC=BOC=,AO=BO,OCAB,设AB=l=2a,OA =r=3a,过点A作AEOB于点E,B+BOC=90,B+BAE=90,BOC=BAE=,
19、即,解得:,由勾股定理得:,故答案为:【点睛】本题考查了垂径定理以及锐角三角函数的定义,解题的关键是熟练掌握垂径定理的内容,作出辅助线,求出AE的值15、【分析】先利用平行条件证明三角形的相似,再利用相似三角形面积比等于相似比的平方,即可解题.【详解】解:DEBC,,由平行条件易证ADEABC,SADE:SABC=1:9,=.【点睛】本题考查了相似三角形的判定和性质,中等难度,熟记相似三角形的面积比等于相似比的平方是解题关键.16、1【分析】求出次品所占的百分比,即可求出1000件中次品的件数【详解】解:10001(件),故答案为:1【点睛】考查样本估计总体,求出样本中次品所占的百分比是解题的
20、关键17、6+【分析】根据直角三角形的面积和扇形面积公式先求出圆形纸片不能接触到的面积,再用等边三角形的面积去减即可得能接触到的最大面积【详解】解:如图,当圆形纸片运动到与A的两边相切的位置时,过圆形纸片的圆心O作两边的垂线,垂足分别为D,E,连接AO,则RtADO中,OAD30,OD1,AD,SADOODAD,S四边形ADOE2SADO,DOE120,S扇形DOE,纸片不能接触到的部分面积为:3()3SABC639纸片能接触到的最大面积为:93+6+故答案为6+【点睛】此题主要考查圆的综合运用,解题的关键是熟知等边三角形的性质、扇形面积公式.18、2【解析】先根据抛物线解析式求出点坐标和其对
21、称轴,再根据对称性求出点坐标,利用点为线段中点,得出点坐标;用含的式子表示出点坐标,写出直线的解析式,再将点坐标代入即可求解出的值【详解】解:抛物线与轴交于点,抛物线的对称轴为顶点坐标为,点坐标为点为线段的中点,点坐标为设直线解析式为(为常数,且)将点代入得将点代入得解得故答案为:2【点睛】考核知识点:抛物线与坐标轴交点问题.数形结合分析问题是关键.三、解答题(共66分)19、(1),点的坐标为(2)线段与线段平行且相等(3)或1(4)存在;点的坐标为(0,3)或(,2)【分析】(1)直线y=x+1与抛物线交于A点,可得点A和点E坐标,则点B、C的坐标分别为:(3,0)、(0,3),即可求解;
22、(2)CQ=AE,直线AQ和AE的倾斜角均为45,即可求解;(3)根据题意将APD的面积和DAB的面积表示出来,令其相等,即可解出m的值;(4)分QOH=90、PQH=90、QHP=90三种情况,分别求解即可【详解】解:(1)直线与抛物线交于点,则点、点.,点的坐标为,故抛物线的表达式为,将点的坐标代入,得,解得,故抛物线的表达式为, 函数的对称轴为,故点的坐标为.(2)CQ=AE,且CQAE,理由是:,CQ=AE,直线CQ表达式中的k=1,与直线AE表达式中k相等,故AECQ,故线段CQ与线段AE的数量关系和位置关系是平行且相等;(3)联立直线与抛物线的表达式,并解得或2.故点.如图1,过点
23、作轴的平行线,交于点,设点,则点.解得或1. (4)存在,理由:设点,点,而点,当时,如图2,过点作轴的平行线,分别交过点、点与轴的平行线于点、,在PGQ和HMP中,即:,解得m=2或n=3,当n=3时,解得:或2(舍去),故点P;当时,如图3,则点、关于抛物线对称轴对称,即垂直于抛物线的对称轴,而对称轴与轴垂直,故轴,则,可得:MQP和NQH都是等腰直角三角形,MQ=MP,MQ=1-m,MP=4-n,n=3+m,代入,解得:或1(舍去),故点P;当时,如图4所示,点在下方,与题意不符,故舍去如图5,P在y轴右侧,同理可得PHKHQJ,可得QJ= HK,QJ=t-1,HK=t+1-n,t-1=
24、t+1-n,n=2,解得:m=(舍去)或,点P(,2)综上,点的坐标为:或(,2)【点睛】本题考查的是二次函数综合运用,难度较大,涉及到一次函数、三角形全等、图形的面积计算等,要注意分类求解,避免遗漏20、(1)27;(2)2【分析】(1)把x1代入yx,求得N的坐标,然后根据待定系数法即可求得k的值;(2)根据勾股定理求得A的坐标,然后利用待定系数法求得直线AB的解析式,再和反比例函数的解析式联立,求得M的坐标,然后根据三角形面积公式即可求得BOM的面积【详解】解:(1)直线l经过N点,点N的横坐标为1,y1,N(1,),点N在反比例函数y(x0)的图象上,k127;(2)点A在直线l上,设
25、A(m,m),OA10,m2+(m)2102,解得m8,A(8,1),OAOB10,B(10,0),设直线AB的解析式为yax+b,解得,直线AB的解析式为y3x+30,解得或,M(9,3),BOM的面积2【点睛】本题考查了反比例函数与一次函数的交点,一次函数图象上点的坐标特征,待定系数法求反比例函数的解析式和一次函数的解析式,求得、点的坐标是解题的关键.21、(1)随机;(2)P(同时抽到两科都准备得较好)【分析】(1)根据三种事件的特点,即可确定答案;(2)先画出树状图,即可快速求出所求事件的概率.【详解】解:(1)由题意可知,小李同学抽到物理实验题目这是一个随机事件,故答案为:随机;(2
26、)树状图如下图所示:则P(同时抽到两科都准备得较好)【点睛】本题考查了求概率的列表法与树状图法,弄清题意,画出树状图或正确的列表是解答本题的关键.22、详见解析【分析】根据ACBC,得出AOC=BOC,再根据SAS定理得出CODCOE,由此可得出结论【详解】解:证明:连接在OCD和OCE中,OCDOCE(SAS)【点睛】本题考查的是圆心角、弧、弦的关系和全等三角形的判定和性质,熟知在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等是解答此题的关键23、(1)6;(2)的长度为2或【分析】(1)由移动过程可知,圆与各边各相切2次;(2)由两种情况,分别构造直角三角形,利用勾股定理求解.【详
27、解】解:(1)由移动过程可知,圆与各边各相切2次,故共相切6次(2)情况如图,E,F为切点,则O1E=O2F=因为是等边三角形所以A=C=60所以AO1E=30所以AE= 所以由O1E2+AE2=O1A2得 解得:=2所以AE=1因为AO1ECO2F(AAS)所以CF=AE=1所以AF=AC-CF=8-1=7所以,所以,的长度为2或【点睛】考核知识点:切线性质.理解切线性质,利用勾股定理求解.24、(1)1a+8;(2)a=-1;或或【分析】(1)将原表达式变为顶点式,即可得到答案;(2)根据顶点式可得抛物线的对称轴是x=1 ,再根据已知条件得到A、B两点的坐标,将坐标代入,即可得到a的值;分情况讨论,当()经过(1,-1)和A(-1,0)时,以及当()经过(1,-1)和B(3,0)时,代入解析式即可求出答案.【详解】(1)=所以顶点坐标为(1,1a+8),则纵坐标为1a+8.(2)解:原解析式变形为:y=抛物线的对称轴是x=1 又 抛物线与x轴的两个交点分别为点A和点B,AB=1 点A和点B各距离对称轴2个单位 点A在点B的左侧A(-1,0),B(3,0)将B(3,0)代入9a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度宠物用品销售及养护服务外包协议4篇
- 2025年度厂房租赁合同配套基础设施完善协议4篇
- 旅游部门半年回顾
- 专用借款协议:2024年版详尽协议版A版
- 2025年度智能家居产品定制生产合同范本4篇
- 二零二四三方国际贸易融资借款协议2篇
- 2025年度拆除项目环保验收合同模板4篇
- 二手房交易代签合同范本2024年版版
- 个性化服务型酒店房间租赁协议版A版
- 二零二五版船艇交易环保与安全协议3篇
- SH/T 3046-2024 石油化工立式圆筒形钢制焊接储罐设计规范(正式版)
- 2024年海口市选调生考试(行政职业能力测验)综合能力测试题及答案1套
- 六年级数学质量分析及改进措施
- 一年级下册数学口算题卡打印
- 真人cs基于信号发射的激光武器设计
- 【阅读提升】部编版语文五年级下册第三单元阅读要素解析 类文阅读课外阅读过关(含答案)
- 四年级上册递等式计算练习200题及答案
- 法院后勤部门述职报告
- 2024年国信证券招聘笔试参考题库附带答案详解
- 道医馆可行性报告
- 仙家送钱表文-文字打印版
评论
0/150
提交评论