山东省济宁市梁山县2022年数学九年级第一学期期末经典试题含解析_第1页
山东省济宁市梁山县2022年数学九年级第一学期期末经典试题含解析_第2页
山东省济宁市梁山县2022年数学九年级第一学期期末经典试题含解析_第3页
山东省济宁市梁山县2022年数学九年级第一学期期末经典试题含解析_第4页
山东省济宁市梁山县2022年数学九年级第一学期期末经典试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1 “黄金分割”是一条举世公认的美学定律. 例如在摄影中,人们常依据黄金分割进行构图,使画面整体和谐. 目前,照相机和手机自带的九宫格就是黄金分割的简化版. 要拍摄草坪上的小狗,按照黄金分割的原则,应该使小狗置于画面中的位置( )ABCD2下列说

2、法正确的是( )A菱形都是相似图形B矩形都是相似图形C等边三角形都是相似图形D各边对应成比例的多边形是相似多边形3反比例函数y=的图象经过点(3,2),下列各点在图象上的是()A(3,2)B(3,2)C(2,3)D(2,3)4小马虎在计算16-x时,不慎将“-”看成了“+”,计算的结果是17,那么正确的计算结果应该是()A15B13C7D5已知RtABC中,C=900,AC=2,BC=3,则下列各式中,正确的是( )A;B;C;D以上都不对;6某班的同学想测量一教楼AB的高度如图,大楼前有一段斜坡BC,已知BC的长为16米,它的坡度i=1:3在离C点45米的D处,测得一教楼顶端A的仰角为37,

3、则一教楼AB的高度约( )米(结果精确到0.1米)(参考数据:sin370.60,cos370.80,tan370.75,31.73)A44.1 B39.8 C36.1 D25.97以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是( )ABCD8如图,在正方形ABCD中,G为CD边中点,连接AG并延长,分别交对角线BD于点F,交BC边延长线于点E若FG2,则AE的长度为( )A6B8C10D129如图,在RtABC中,ACB90,AC24,AB25,CD是斜边AB上的高,则cosBCD的值为()ABCD10对于一个函数,自变量x取a时,函数值y也等于a,

4、我们称a为这个函数的不动点.如果二次函数yx2+2x+c有两个相异的不动点x1、x2,且x11x2,则c的取值范围是( )Ac3Bc2CcDc1二、填空题(每小题3分,共24分)11已知反比例函数y=的图象在第一、三象限内,则k的值可以是_(写出满足条件的一个k的值即可)12若函数是反比例函数,则_13将一些相同的圆点按如图所示的规律摆放:第1个图形有3个圆点,第2个形有7个圆点,第3个图形有13个圆点,第4个图形有21个圆点,则第20个图形有_个圆点14已知四条线段a、2、6、a1成比例,则a的值为_15代数式a2a3的值为7,则代数式2a22a3的值为_16已知是关于x的一元二次方程的一个

5、解,则此方程的另一个解为_.17已知x=2是方程x2-a=0的解,则a=_18经过点(1,4)的反比例函数的解析式是_三、解答题(共66分)19(10分)如图,在RtABC中,C90,BC2,求AB的长20(6分)阅读材料:求解一元一次方程,需要根据等式的基本性质,把方程转化为的形式;求解二元一次方程组,需要通过消元把它转化为一元一次方程来解;求解三元一次方程组,要把它转化为二元一次方程组来解;求解一元二次方程,需要把它转化为连个一元一次方程来解;求解分式方程,需要通过去分母把它转化为整式方程来解;各类方程的解法不尽相同,但是它们都用到一种共同的基本数学思想转化,即把未知转化为已知来求解. 用

6、“转化”的数学思想,我们还可以解一些新的方程. 例如,解一元三次方程,通过因式分解把它转化为,通过解方程和,可得原方程的解. 再例如,解根号下含有来知数的方程:,通过两边同时平方把它转化为,解得:. 因为,且,所以不是原方程的根,是原方程的解. (1)问题:方程的解是,_,_;(2)拓展:求方程的解.21(6分)解一元二次方程:x2+4x5122(8分)如图,在平面直角坐标系中,OAOB,ABx轴于点C,点A(,1)在反比例函数的图象上(1)求反比例函数的表达式;(2)在x轴的负半轴上存在一点P,使得SAOP=SAOB,求点P的坐标;(3)若将BOA绕点B按逆时针方向旋转60得到BDE,直接写

7、出点E的坐标,并判断点E是否在该反比例函数的图象上,说明理由23(8分)问题呈现:如图 1,在边长为 1 小的正方形网格中,连接格点 A、B 和 C、D,AB 和 CD 相交于点 P,求 tan CPB 的值方法归纳:求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形,观察发现问题中 CPB不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点 B、 E,可得 BECD,则ABE=CPB,连接AE,那么CPB 就变换到 RtABE 中问题解决:(1)直接写出图 1 中 tan CPB 的值为_;(2)如图 2,在边长为 1 的正方形网格中,AB 与 CD 相

8、交于点 P,求 cos CPB 的值24(8分)不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,求下列事件的概率(1)两次都摸到红球;(2)第一次摸到红球,第二次摸到绿球25(10分)计算:解方程:26(10分)如图,一电线杆AB的影子分别落在了地上和墙上同一时刻,小明竖起1米高的直杆MN,量得其影长MF为0.5米,量得电线杆AB落在地上的影子BD长3米,落在墙上的影子CD的高为2米你能利用小明测量的数据算出电线杆AB的高吗?参考答案一、选择题(每小题3分,共30分)1、B【解析】黄金分割是指将整体一分为二,较大部分与整体部分的比值等于较小

9、部分与较大部分的比值,其比值约为0.618,观察图中的位置可知应该使小狗置于画面中的位置,故选B.2、C【分析】利用相似图形的定义分别判断后即可确定正确的选项【详解】解:A、菱形的对应边成比例,但对应角不一定相等,故错误,不符合题意;B、矩形的对应角相等,但对应边不一定成比例,故错误,不符合题意;C、等边三角形的对应边成比例,对应角相等,故正确,符合题意;D、各边对应成比例的多边形的对应角不一定相等,故错误,不符合题意,故选:C【点睛】考查了相似图形的定义,解题的关键是牢记相似多边形的定义,难度较小3、D【解析】分析:直接利用反比例函数图象上点的坐标特点进而得出答案详解:反比例函数y=的图象经

10、过点(3,-2),xy=k=-6,A、(-3,-2),此时xy=-3(-2)=6,不合题意;B、(3,2),此时xy=32=6,不合题意;C、(-2,-3),此时xy=-3(-2)=6,不合题意;D、(-2,3),此时xy=-23=-6,符合题意;故选D点睛:此题主要考查了反比例函数图象上点的坐标特征,正确得出k的值是解题关键4、A【详解】试题分析:由错误的结果求出x的值,代入原式计算即可得到正确结果解:根据题意得:16+x=17,解得:x=3,则原式=16x=161=15,故选A考点:解一元一次方程5、C【分析】根据勾股定理求出AB,根据锐角三角函数的定义求出各个三角函数值,即可得出答案【详

11、解】如图: 由勾股定理得:AB= ,所以cosB=,sinB= ,所以只有选项C正确;故选:C【点睛】此题考查锐角三角函数的定义的应用,能熟记锐角三角函数的定义是解此题的关键6、C【解析】延长AB交直线DC于点F,在RtBCF中利用坡度的定义求得CF的长,则DF即可求得,然后在直角ADF中利用三角函数求得AF的长,进而求得AB的长【详解】延长AB交直线DC于点F在RtBCF中,BFCF=i=1:3,设BF=k,则CF=3k,BC=2k又BC=16,k=8,BF=8,CF=83DF=DC+CF,DF=45+83在RtADF中,tanADF=AFDF,AF=tan37(45+83)44.13(米)

12、,AB=AF-BF,AB=44.13-836.1米故选C【点睛】本题考查了解直角三角形的应用,关键是根据仰角构造直角三角形,利用三角函数求解,注意利用两个直角三角形的公共边求解是解答此类题型的常用方法7、D【解析】由于内接正三角形、正方形、正六边形是特殊内角的多边形,可构造直角三角形分别求出边心距的长,由勾股定理逆定理可得该三角形是直角三角形,进而可得其面积【详解】如图1,OC=1,OD=1sin30=;如图2,OB=1,OE=1sin45=;如图3,OA=1,OD=1cos30=,则该三角形的三边分别为:、,()2+()2=()2,该三角形是以、为直角边,为斜边的直角三角形,该三角形的面积是

13、,故选:D【点睛】考查正多边形的外接圆的问题,应用边心距,半径和半弦长构成直角三角形,来求相关长度是解题关键。8、D【解析】根据正方形的性质可得出ABCD,进而可得出ABFGDF,根据相似三角形的性质可得出=2,结合FG=2可求出AF、AG的长度,由ADBC,DG=CG,可得出AG=GE,即可求出AE=2AG=1【详解】解:四边形ABCD为正方形,AB=CD,ABCD, ABF=GDF,BAF=DGF,ABFGDF,=2,AF=2GF=4,AG=2ADBC,DG=CG,=1,AG=GEAE=2AG=1故选:D【点睛】本题考查了相似三角形的判定与性质、正方形的性质,利用相似三角形的性质求出AF的

14、长度是解题的关键9、B【分析】根据同角的余角相等得BCD=A,利用三角函数即可解题.【详解】解:在中,,是斜边上的高,BCD=A(同角的余角相等),= ,故选B.【点睛】本题考查了三角函数的余弦值,属于简单题,利用同角的余角相等得BCD=A是解题关键.10、B【分析】由题意知二次函数yx2+2x+c有两个相异的不动点x1、x2,由此可知方程x2+x+c0有两个不相等的实数根,即=1-4c0,再由题意可得函数y= x2+x+c0在x=1时,函数值小于0,即1+1+c0,又x2+x+c0的两个不相等实数根为x1、x2,x11x2,所以函数y= x2+x+c0在x=1时,函数值小于0,即1+1+c0

15、,综上则,解得c2,故选B.【点睛】本题考查了二次函数与一元二次方程的关系,正确理解题中的定义,熟练掌握二次函数与一元二次方程的关系是解题的关键.二、填空题(每小题3分,共24分)11、1【解析】在本题中已知“反比例函数的图像在第一、三象限内,”从而得到2-k0,顺利求解k的值.【详解】反比例函数的图像在第一、三象限内可得,2-k0解得:k2不妨取k=1,可得已知反比例函数,即可满足的图像在第一、三象限内.【点睛】熟练掌握反比例函数的性质是本题的解题关键.12、-1【分析】根据反比例函数的定义可求出m的值【详解】解:函数是反比例函数解得,故答案为:-1【点睛】本题考查的知识点是反比例函数的定义

16、,比较基础,易于掌握13、1【分析】观察图形可知,每个图形中圆点的个数为序号数的平方加上序号数+1,依此可求第n个图有多少个圆点【详解】解:由图形可知,第1个图形有12+1+13个圆点;第2个图形有22+2+17个圆点;第3个图形有32+3+113个圆点;第4个图形有42+4+121个圆点;则第n个图有(n2+n+1)个圆点;所以第20个图形有202+20+11个圆点故答案为:1【点睛】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键14、3【分析】由四条线段a、2、6、a1成比例,根据成比例线段的定义,即可得=,即可求得a的值【详解】解:四条线段a、2、6、a1成比例,=

17、,a(a+1)=12,解得:a1=3,a2=-4(不符合题意,舍去).故答案为3.【点睛】本题考查了线段成比例的定义:若四条线段a,b,c,d成比例,则有a:b=c:d15、3【分析】先求得a2+a=1,然后依据等式的性质求得2a3+2a=2,然后再整体代入即可【详解】代数式a2+a+3的值为7,a2+a=12a3+2a=22a3+2a-3=2-3=3故答案为3【点睛】本题主要考查的是求代数式的值,整体代入是解题的关键16、【分析】将x=-3代入原方程,解一元二次方程即可解题.【详解】解:将x=-3代入得,a=-1,原方程为,解得:x=1或-3,【点睛】本题考查了含参的一元二次方程的求解问题,

18、属于简单题,熟悉概念是解题关键.17、4【分析】将x=2代入方程计算即可求出a的值【详解】解:将x=2代入方程得:4-a=0,解得:a=4,故答案为:4.【点睛】本题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值18、【分析】直接利用反比例函数的性质得出解析式【详解】反比例函数经过点(1,4),xy4,反比例函数的解析式是:y故答案为:y【点睛】本题考查的是反比例函数的性质,是近几年中考的热点问题,要熟练掌握.三、解答题(共66分)19、AB【分析】通过解直角三角形先求出AC的值,之后通过勾股定理进一步求解即可.【详解】在RtABC中,C90,.,BC2,即AC6.,又,

19、 40,AB.【点睛】本题主要考查了解直角三角形与勾股定理的运用,熟练掌握相关概念是解题关键.20、(1);(2)【分析】(1)利用因式分解法,即可得出结论;(2)先方程两边平方转化成整式方程,再求一元二次方程的解,最后必须检验.【详解】(1)x3+x2-2x=0,x(x-1)(x+2)=0 x=0或x-1=0或x+2=0,x1=0,x2=1,x3=-2,故答案为1,-2;(2),()给方程两边平方得:解得:,(不合题意舍去),是原方程的解;【点睛】主要考查了根据材料提供的方法解高次方程,无理方程,理解和掌握材料提供的方法是解题的关键.21、x25,x22【分析】利用因式分解法解方程【详解】(

20、x+5)(x2)2,x+52或x22,所以x25,x22【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法22、(1);(2)P(,0);(3)E(,1),在【分析】(1)将点A(,1)代入,利用待定系数法即可求出反比例函数的表达式;(2)先由射影定理求出BC=3,那么B(,3),计算求出SAOB=4=则SAOP=SAOB=设点P的坐标为(m,0),列出方程求解即可;(3)先解OAB,得出ABO=30,再根据旋转的性质求出E点坐标为(,1),即可求解【详解】(1)点A(,1)在反比例函数的图象上,k=1=,

21、反比例函数的表达式为;(2)A(,1),ABx轴于点C,OC=,AC=1,由射影定理得=ACBC,可得BC=3,B(,3),SAOB=4=,SAOP=SAOB=设点P的坐标为(m,0),|m|1=,|m|=,P是x轴的负半轴上的点,m=,点P的坐标为(,0);(3)点E在该反比例函数的图象上,理由如下:OAOB,OA=2,OB=,AB=4,sinABO=,ABO=30,将BOA绕点B按逆时针方向旋转60得到BDE,BOABDE,OBD=60,BO=BD=,OA=DE=2,BOA=BDE=90,ABD=30+60=90,而BDOC=,BCDE=1,E(,1),(1)=,点E在该反比例函数的图象上

22、考点:待定系数法求反比例函数解析式;反比例函数系数k的几何意义;坐标与图形变化-旋转23、(1)2;(2)【分析】(1)根据平行四边形的判定及平行线的性质得到CPB=ABE,利用勾股定理求出AE,BE,AB,证明ABE是直角三角形,AEB=90,即可求出tan CPB= tan ABE;(2)如图2中,取格点D,连接CD,DM通过平行四边形及平行线的性质得到CPB=MCD,利用勾股定理的逆定理证明CDM是直角三角形,且CDM=90,即可得到cosCPB=cosMCD【详解】解:(1)连接格点 B、 E,BCDE,BC=DE,四边形BCDE是平行四边形,DCBE,CPB=ABE,AE=,BE=,AB= ,ABE是直角三角形,AEB=90,tanCPB= tanABE=,故答案为:2;(2)如图2所示,取

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论