版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,实施施工时“”,设实际每天铺设管道x米,则可得方程 =15,根据此情景,题中用“”表示的缺失的条件应补为()A每天比原计划多铺设10米,结果延期1
2、5天才完成B每天比原计划少铺设10米,结果延期15天才完成C每天比原计划多铺设10米,结果提前15天才完成D每天比原计划少铺设10米,结果提前15天才完成2如图,在平行四边形ABCD中,F是边AD上的一点,射线CF和BA的延长线交于点E,如果,那么的值是()ABCD3在一个不透明的袋子中,装有红球、黄球、篮球、白球各1个,这些球除颜色外无其他差别,从袋中随机取出一个球,取出红球的概率为()ABCD14如图,ABC中,点D,E在边AB,AC上,DEBC,ADE与ABC的周长比为25,则ADDB为( )A25B425C23D525如图,RtABC中,B90,AB3,BC2,则cosA( )ABCD
3、6已知ABCDEF, A=85;F=50,那么cosB的值是( )A1BCD7在RtABC中,C=90,如果,那么的值是( )A90B60C45D308如图是抛物线ya(x1)22的一部分,该抛物线在y轴右侧部分与x轴的交点坐标是( )A(,0)B(1,0)C(2,0)D(3,0)9抛物线y2(x+1)23的对称轴是()A直线x1B直线x1C直线x3D直线x310有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?若设每轮传染中平均一个人传染了x个人,那么x满足的方程是( )ABCD二、填空题(每小题3分,共24分)11在菱形中,周长为,则其面积为_12如图,
4、正方形网格中,5个阴影小正方形是一个正方体表面展开图的一部分现从其余空白小正方形中任取一个涂上阴影,则图中六个阴影小正方形能构成这个正方体的表面展开图的概率是_13若,则_.14如图,在平面直角坐标系中,ABCD的顶点B,C在x轴上,A,D两点分别在反比例函数y(x0)与y(x0)的图象上,若ABCD的面积为4,则k的值为:_15已知关于x方程x23x+a=0有一个根为1,则方程的另一个根为_16如图,直线轴于点,且与反比例函数()及()的图象分别交于、两点,连接、,已知的面积为4,则_17关于x的一元二次方程kx2x+2=0有两个不相等的实数根,那么k的取值范围是_18如图,在O中,弦AB=
5、8cm,OCAB,垂足为C,OC=3cm,则O的半径为_cm.三、解答题(共66分)19(10分)如图,AB是O的直径,CD是O的弦,如果ACD30(1)求BAD的度数;(2)若AD,求DB的长20(6分)初三年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高m,与篮圈中心的水平距离为7m,当球出手后水平距离为4m时到达最大高度4m,设篮球运行的轨迹为抛物线,篮圈距地面3m(1)建立如图所示的平面直角坐标系,求抛物线的解析式并判断此球能否准确投中?(2)此时,若对方队员乙在甲前面1m处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功?21(6分)阅读下面材料,完成(1)
6、,(2)两题数学课上,老师出示了这样一道题:如图1,在中,点为上一点,且满足,为上一点,延长交于,求的值同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现与相等”小伟:“通过构造全等三角形,经过进一步推理,就可以求出的值”老师:“把原题条件中的,改为其他条件不变(如图2),也可以求出的值(1)在图1中,求证:;求出的值;(2)如图2,若,直接写出的值(用含的代数式表示)22(8分)如图,正方形ABCD,ABE是等边三角形,M是正方形ABCD对角线AC(不含点A)上任意一点,将线段AM绕点A逆时针旋转60得到AN,连接EN、DM求证:ENDM23(8分)甲口袋中有2个白球、1个红球
7、,乙口袋中有1个白球、1个红球,这些球除颜色外无其他差别.分别从每个口袋中随机摸出1个球.(1)求摸出的2个球都是白球的概率.(2)请比较摸出的2个球颜色相同摸出的2个球中至少有1个白球,这两种情况哪个概率大,请说明理由24(8分)如图,四边形ABCD是O的内接四边形,若BOD=88,求BCD的度数 25(10分)已知是的反比例函数,下表给出了与的一些值:141(1)写出这个反比例函数表达式;(2)将表中空缺的值补全26(10分)如图,抛物线()与双曲线相交于点、,已知点坐标,点在第三象限内,且的面积为3(为坐标原点).(1)求实数、的值;(2)在该抛物线的对称轴上是否存在点使得为等腰三角形?
8、若存在请求出所有的点的坐标,若不存在请说明理由.(3)在坐标系内有一个点,恰使得,现要求在轴上找出点使得的周长最小,请求出的坐标和周长的最小值.参考答案一、选择题(每小题3分,共30分)1、C【解析】题中方程表示原计划每天铺设管道米,即实际每天比原计划多铺设米,结果提前天完成,选2、D【解析】分析:根据相似三角形的性质进行解答即可详解:在平行四边形ABCD中,AECD, EAFCDF, AFBC,EAFEBC, 故选D.点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方.3、C【详解】解:共有4个球,红球有1个,摸出的球是红球的概率是:P=故选C【点睛】本题考查概率公式4、C【分析
9、】由题意易得,根据两个相似三角形的周长比等于相似比可直接得解【详解】,ADE与ABC的周长比为25,故选C【点睛】本题主要考查相似三角形的性质,关键是根据两个三角形相似,那么它们的周长比等于相似比5、D【分析】根据勾股定理求出AC,根据余弦的定义计算得到答案【详解】由勾股定理得,AC,则cosA,故选:D【点睛】本题考查的是锐角三角函数的定义,掌握锐角A的邻边b与斜边c的比叫做A的余弦是解题的关键6、C【分析】由题意首先根据相似三角形求得B的度数,然后根据特殊角的三角函数值确定正确的选项即可【详解】解:ABCDEF,A=85,F=50,C=F=50,B=180-A-C=180-85-50=45
10、,cosB=cos45=.故选:C.【点睛】本题主要考查相似三角形的性质以及三角函数相关,解题的关键是熟练掌握相似三角形的对应角相等7、C【分析】根据锐角三角函数的定义解得即可【详解】解:由已知, C=90=45故选:C【点睛】本题考查了锐角三角函数的定义,解答关键是根据定义和已知条件构造等式求解8、B【解析】根据图表,可得抛物线y=a(x+1)2+2与x轴的交点坐标为(3,0);将(3,0)代入y=a(x+1)2+2,可得a(3+1)2+2=0,解得a=;所以抛物线的表达式为y=(x+1)2+2;当y=0时,可得(x+1)2+2=0,解得x1=1,x2=3,所以该抛物线在y轴右侧部分与x轴交
11、点的坐标是(1,0)故选 B.9、B【分析】根据题目中抛物线的解析式,可以写出该抛物线的对称轴【详解】解:抛物线y2(x+1)23,该抛物线的对称轴为直线x1,故选:B【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h,k)10、D【分析】先由题意列出第一轮传染后患流感的人数,再列出第二轮传染后患流感的人数,即可列出方程【详解】解:设每轮传染中平均一个人传染了x个人,则第一轮传染后患流感的人数是:1+x,第二轮传染后患流感的人数是:1+x+x(1+x),因此可列方程,1+x+x(1+x)=1故选:D【点睛】本题主要
12、考查一元二次方程的应用,找到等量关系是解题的关键二、填空题(每小题3分,共24分)11、8【分析】根据已知求得菱形的边长,再根据含的直角三角形的性质求出菱形的高,从而可求菱形的面积【详解】解:如图,作AEBC于E,菱形的周长为,AB=BC=4,,AE= =2,菱形的面积= .故答案是:8.【点睛】此题主要考查了菱形的性质,利用含的直角三角形的性质求出菱形的高是解题的关键12、【分析】首先确定所求的阴影小正方形可能的位置总数目,除以剩余空白部分的正方形的面积个数即为所求的概率【详解】解:从阴影下边的四个小正方形中任选一个,就可以构成正方体的表面展开图,能构成这个正方体的表面展开图的概率是故答案为
13、:【点睛】本题将概率的求解设置于正方体的表面展开图中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性用到的知识点为:概率=相应的面积与总面积之比;“一,四,一”组合类型的6个正方形能组成正方体13、【分析】由题意直接根据分比性质,进行分析变形计算可得答案【详解】解:,由分比性质,得.故答案为:.【点睛】本题考查比例的性质,熟练掌握并利用分比性质是解题的关键.14、2【分析】连接OA、OD,如图,利用平行四边形的性质得AD垂直y轴,则利用反比例函数的比例系数k的几何意义得到SOAE和SODE,所以SOAD
14、+,然后根据平行四边形的面积公式可得到ABCD的面积2SOAD2,即可求出k的值【详解】连接OA、OD,如图,四边形ABCD为平行四边形,AD垂直y轴,SOAE|3|,SODE|k|,SOAD+,ABCD的面积2SOAD23+|k|2,k0,解得k2,故答案为2【点睛】此题考查平行四边形的性质、反比例函数的性质,反比例函数图形上任意一点向两个坐标轴作垂线构成的矩形面积等于,再与原点连线分矩形为两个三角形,面积等于.15、1【解析】分析:设方程的另一个根为m,根据两根之和等于-,即可得出关于m的一元一次方程,解之即可得出结论详解:设方程的另一个根为m,根据题意得:1+m=3,解得:m=1故答案为
15、1点睛:本题考查了根与系数的关系,牢记两根之和等于-是解题的关键16、1【分析】根据反比例函数的几何意义可知:的面积为,的面积为,然后两个三角形面积作差即可求出结果【详解】解:根据反比例函数的几何意义可知:的面积为,的面积为,的面积为,.故答案为1【点睛】本题考查反比例函数的几何意义,解题的关键是正确理解的几何意义,本题属于基础题型17、且k1【详解】解:关于x的一元二次方程有两个不相等的实数根,解得:k且k1故答案为k且k1点睛:本题考查了根的判别式、一元二次方程的定义以及二次根式有意义的条件,根据一元二次方程的定义、二次根式下非负以及根的判别式列出关于k的一元一次不等式组是解题的关键18、
16、5【分析】先根据垂径定理得出AC的长,再由勾股定理即可得出结论【详解】连接OA,OCAB,AB=8,AC=4,OC=3,OA=故答案为:5.【点睛】此题考查勾股定理、垂径定理及其推论,解题关键在于连接OA作为辅助线.三、解答题(共66分)19、(1)60;(2)3【分析】(1)根据圆周角定理得到ADB90,BACD30,然后利用互余可计算出BAD的度数;(2)利用含30度的直角三角形三边的关系求解【详解】解:(1)AB是O的直径,ADB90,BACD30,BAD90B903060;(2)在RtADB中,【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的
17、圆心角的一半半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径20、(1)y=(x4)2+4;能够投中;(2)能够盖帽拦截成功【分析】(1)根据题意可知:抛物线经过(0,),顶点坐标是(4,4),然后设出抛物线的顶点式,将(0,)代入,即可求出抛物线的解析式,然后判断篮圈的坐标是否满足解析式即可;(2)当时,求出此时的函数值,再与3.1m比较大小即可判断.【详解】解:由题意可知,抛物线经过(0,),顶点坐标是(4,4)设抛物线的解析式是,将(0,)代入,得解得,所以抛物线的解析式是;篮圈的坐标是(7,3),代入解析式得,这个点在抛物线上,能够投中答:能够投中 (2)当时,3.1,所以
18、能够盖帽拦截成功.答:能够盖帽拦截成功.【点睛】此题考查的是二次函数的应用,掌握二次函数的顶点式和利用二次函数解析式解决实际问题是解决此题的关键.21、(1)证明见解析;(2)【分析】(1)根据三角形内角和定理可得,然后根据三角形外角的性质可得,从而证出结论;过点作交的延长线于点,过点作于点,过点作交于点,利用ASA证出,可得,再利用AAS证出,可得,利用平行线分线段成比例定理即可证出结论;(2)根据三角形内角和定理可得,然后根据三角形外角的性质可得,过点作交的延长线于点,过点作于点,过点作交于点,利用ASA证出,可得,再利用相似三角形的判定证出,可得,利用平行线分线段成比例定理即可证出结论;
19、【详解】证明:(1),如图,过点作交的延长线于点,过点作于点,过点作交于点,点是中点,(2),过点作交的延长线于点,过点作于点,过点作交于点,【点睛】此题考查的是相似三角形与全等三角形的综合大题,掌握构造全等三角形、相似三角形的方法、全等三角形的判定及性质和相似三角形的判定及性质是解决此题的关键22、证明见解析【分析】利用等边三角形的性质以及旋转的性质,即可判定EANDAM(SAS),依据全等三角形的对应边相等,即可得到ENDM【详解】证明:ABE是等边三角形,BAE60,BAEA,由旋转可得,MAN60,AMAN,BAEMAN,EANBAM,四边形ABCD是正方形,BADA,BAMDAM45
20、,EADA,EANDAM,在EAN和DAM中,EADAEAN=DAM,AN=AM,EANDAM(SAS),ENDM【点睛】本题主要考查了旋转的性质以及全等三角形的判定与性质,解决本题的关键是要熟练掌握旋转图形的性质和全等三角形的判定和性质.23、(1)摸出的2个球都是白球的概率为;(2)概率最大的是摸岀的2个球中至少有1个白球.理由见解析.【分析】(1)先画树状图展示所以6种等可能的结果,其中摸出的2个球都是白球的有2种结果,然后根据概率定义求解(2)根据树状图可知:共有6种等可能的结果,其中摸出的2个球颜色相同的有3种结果,摸出的2个球中至少有1个白球的有5种结果,根据概率公式分别计算出各自
21、的概率,再比较大小即可.【详解】(1)画树状图如下:由树状图知,共有6种等可能结果,其中摸出的2个球都是白球的有2种结果,所以摸出的2个球都是白球的概率为;(2)摸出的2个球颜色相同概率为、摸出的2个球中至少有1个白球的概率为,概率最大的是摸岀的2个球中至少有1个白球.【点睛】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出,再从中选出符合事件A或B的结果数目,求出概率24、136【解析】试题分析:由BOD=88,根据“圆周角定理”可得BAD的度数;由四边形ABCD是O的内接四边形,可得BAD+BCD=180,由此即可解得BCD的度数.试题解析:BOD=88, BAD=882=44,四边形ABCD是O的内接四边形,BAD+BCD=180,BCD=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 团队建设管理培训40
- 中原地产-拓展客户与行销技巧
- 〈〈钱塘湖春行〉课件图
- 《我要健康成长》课件
- 《展会招商的技巧》课件
- 梵高-英文课件(在文辑中配有英文演讲稿)
- 低温预制食品智能化生产项目可行性研究报告模板-备案拿地
- 工学《动能 动能定理》课件设计
- 单位人力资源管理制度品读汇编十篇
- 单位管理制度展示汇编员工管理十篇
- 外研版八年级英语上册期末单词词性分类测试表(汉译英)
- 童话知识竞赛课件
- 一氧化氮让你远离心脑血管病第(全书回顾综合版)
- GB/T 12574-2023喷气燃料总酸值测定法
- 2022年天津三源电力集团限公司社会招聘33人上岸笔试历年难、易错点考题附带参考答案与详解
- 抑郁病诊断证明书
- 对话大国工匠-致敬劳动模范期末考试答案
- 财务总监绩效考核表
- 尿崩症诊疗规范内科学诊疗规范诊疗指南2023版
- 压缩语段之语段要点概括公开课一等奖市优质课赛课获奖课件
- 数字孪生水利工程建设技术导则(试行)
评论
0/150
提交评论