海南省2022年数学九上期末检测试题含解析_第1页
海南省2022年数学九上期末检测试题含解析_第2页
海南省2022年数学九上期末检测试题含解析_第3页
海南省2022年数学九上期末检测试题含解析_第4页
海南省2022年数学九上期末检测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1关于的方程有实数根,则满足( )AB且C且D2下列四个点中,在反比例函数y的图象上的是()A(3,2)B(3,2)C(2,3)D(2,3)3如图所示,是的中线,是上一点,的延长线交于,( )ABCD4如图,点,都在上,且的度数为,则等于( )A

2、BCD5从一张圆形纸板剪出一个小圆形和一个扇形,分别作为圆锥体的底面和侧面,下列的剪法恰好配成一个圆锥体的是()ABCD6如图,O 中,弦 AB、CD 相交于点 P,A40,APD75,则B 的度数是( )A15B40C75D357为了让市民游客欢度“五一”,泉州市各地推出了许多文化旅游活动和景区优惠,旅游人气持续兴旺从市文旅局获悉,“五一”假日全市累计接待国内外游客171.18万人次,171.18万这个数用科学记数法应表示为()A1.711810B0.1711810C1.711810D171.18108已知二次函数y=ax2+bx+c(a0)的图象如图所示,并且关于x的一元二次方程ax2+b

3、x+cm=0有两个不相等的实数根,下列结论:b24ac0;abc0;a-b+c0;m2,其中,正确的个数有A1个B2个C3个D4个9圆的面积公式SR2中,S与R之间的关系是()AS是R的正比例函数BS是R的一次函数CS是R的二次函数D以上答案都不对10一个不透明的布袋里装有8个只有颜色不同的球,其中2个红球,6个白球.从布袋里任意摸出1个球,则摸出的球是白球的概率为( )ABCD11如图坐标系中,O(0,0),A(3,3),B(6,0),将OAB沿直线CD折叠,使点A恰好落在线段OB上的点E处,若OE,则AC:AD的值是( )A1:2B2:3C6:7D7:812对于不为零的两个实数a,b,如果

4、规定ab,那么函数的图象大致是( )ABCD二、填空题(每题4分,共24分)13若关于的一元二次方程x2+2x-k=0没有实数根,则k的取值范围是_14小亮在投篮训练中,对多次投篮的数据进行记录得到如下频数表:投篮次数20406080120160200投中次数1533496397128160投中的频率0.750.830.820.790.810.80.8估计小亮投一次篮,投中的概率是_15如图,点是矩形中边上一点,将沿折叠为,点落在边上,若,则_16如图,是的中线,点在延长线上,交的延长线于点,若,则_.17已知ABC中,AB=10,AC=2,B=30,则ABC的面积等于_18已知,关于原点对称

5、,则_三、解答题(共78分)19(8分)某区规定学生每天户外体育活动时间不少于1小时,为了解学生参加户外体育活动的情况,对部分学生每天参加户外体育活动的时间进行了随机抽样调查,并将调查结果绘制成如图的统计图表(不完整)请根据图表中的信息,解答下列问题:(1)表中的a_,将频数分布直方图补全;(2)该区8000名学生中,每天户外体育活动的时间不足1小时的学生大约有多少名?(3)若从参加户外体育活动时间最长的3名男生和1名女生中随机抽取两名,请用画树状图或列表法求恰好抽到1名男生和1名女生的概率组别时间(小时)频数(人数)频率A0t0.5200.05B0.5t1a0.3Clt1.51400.35D

6、1.5t2800.2E2t2.5400.120(8分)如图,点,在反比例函数的图象上,作轴于点求反比例函数的表达式;若的面积为,求点的坐标.21(8分)某种商品进价为每件60元,售价为每件80元时,每个月可卖出100件;如果每件商品售价每上涨5元,则每个月少卖10件设每件商品的售价为x元(x为正整数,且x80)(1)若希望每月的利润达到2400元,又让利给消费者,求x的值;(2)当每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?22(10分)小华为了测量楼房的高度,他从楼底的处沿着斜坡向上行走,到达坡顶处已知斜坡的坡角为,小华的身高是,他站在坡顶看楼顶处的仰角为,求楼房

7、的高度(计算结果精确到)(参考数据:,)23(10分)如图,在中,点在边上,且,已知,(1)求的度数;(2)我们把有一个内角等于的等腰三角形称为黄金三角形它的腰长与底边长的比(或者底边长与腰长的比)等于黄金比写出图中所有的黄金三角形,选一个说明理由;求的长24(10分)综合与探究如图,已知抛物线与轴交于,两点,与轴交于点,对称轴为直线,顶点为.(1)求抛物线的解析式及点坐标;(2)在直线上是否存在一点,使点到点的距离与到点的距离之和最小?若存在,求出点的坐标;若不存在,请说明理由.(3)在轴上取一动点,过点作轴的垂线,分别交抛物线,于点,.判断线段与的数量关系,并说明理由连接,当为何值时,四边

8、形的面积最大?最大值为多少?25(12分)为纪念建国70周年,某校举行班级歌咏比赛,歌曲有:我爱你,中国,歌唱祖国,我和我的祖国(分别用字母A,B,C依次表示这三首歌曲)比赛时,将A,B,C这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛(1)八(1)班抽中歌曲我和我的祖国的概率是_;(2)试用画树状图或列表的方法表示所有可能的结果,并求出八(1)班和八(2)班抽中不同歌曲的概率26如图,在等腰直角三角形ABC中,D是AB的中点,E,F分别是AC,BC上的点(点E不与

9、端点A,C重合),且连接EF并取EF的中点O,连接DO并延长至点G,使,连接DE,DF,GE,GF(1)求证:四边形EDFG是正方形;(2)直接写出当点E在什么位置时,四边形EDFG的面积最小?最小值是多少?参考答案一、选择题(每题4分,共48分)1、A【分析】分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a5时,根据判别式的意义得到a1且a5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a的范围【详解】当a=5时,原方程变形为-4x-1=0,解得x=-;当a5时,=(-4)2-4(a-5)(-1)0,解得a1,即a1且a5时,方程有两个实数根,所以a的取值范围为a1

10、故选A【点睛】本题考查了一元二次方程ax2+bx+c=0(a0)的根的判别式=b2-4ac:当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根也考查了一元二次方程的定义2、C【分析】先分别计算四个点的横、纵坐标之积,然后根据反比例函数图象上点的坐标特征进行判断【详解】解:3(2)6,326,236,2(3)6,点(2,3)在反比例函数y的图象上故选:C【点睛】此题考查的是判断在反比例函数图象上的点,掌握点的横、纵坐标之积等于反比例函数的比例系数即可判断该点在反比例函数图象上是解决此题的关键3、D【分析】作DHBF交AC于H,根据三角形中位线定理得到FH=HC,

11、根据平行线分线段成比例定理得到,据此计算得到答案【详解】解:作DHBF交AC于H,AD是ABC的中线,BD=DC,FH=HC,FC=2FH,DHBF,AF:FC=1:6,AF:AC=1:7,故选:D【点睛】本题考查平行线分线段成比例定理,作出平行辅助线,灵活运用定理、找准比例关系是解题的关键4、D【分析】连接AB、DE,先求得ABE=ADE=25,根据圆内接四边形的性质得出ABE+EBC+ADC=180,即可求得CBE+ADC=155【详解】解:如图所示连接AB、DE,则ABE=ADE=50ABE=ADE=25点,都在上ADC+ABC=180ABE+EBC+ADC=180EBC+ADC=180

12、-ABE=180-25=155故选:D【点睛】本题主要考查的是圆周角定理和圆内接四边形的性质,作出辅助线构建内接四边形是解题的关键5、B【分析】根据圆锥的底面圆的周长等于扇形弧长,只要图形中两者相等即可配成一个圆锥体即可【详解】选项A、C、D中,小圆的周长和扇形的弧长都不相等,故不能配成一个圆锥体,只有B符合条件故选B【点睛】本题考查了学生的动手能力及空间想象能力对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现6、D【分析】由,可知的度数,由圆周角定理可知,故能求出B .【详解】,由圆周角定理可知(同弧所对的圆周角相等),在三角形BDP中,所以D选项是正确的.【点睛】本题主要考查圆周角

13、定理的知识点,还考查了三角形内角和为的知识点,基础题不是很难.7、C【分析】用科学记数法表示较大数的形式是 ,其中,n为正整数,只要确定a,n即可.【详解】将171.18万用科学记数法表示为:1.71181故选:C【点睛】本题主要考查科学记数法,掌握科学记数法是解题的关键.8、C【详解】解:如图所示:图象与x轴有两个交点,则b24ac0,故错误;图象开口向上,a0,对称轴在y轴右侧,a,b异号,b0,图象与y轴交于x轴下方,c0,abc0,故正确;当x=1时,ab+c0,故选项正确;二次函数y=ax2+bx+c的顶点坐标纵坐标为:2,关于x的一元二次方程ax2+bx+cm=0有两个不相等的实数

14、根,则m2,故正确故选C考点:二次函数图象与系数的关系9、C【解析】根据二次函数的定义,易得S是R的二次函数,故选C.10、A【解析】用白球的个数除以球的总个数即为所求的概率.【详解】解:因为一共有8个球,白球有6个,所以从布袋里任意摸出1个球,摸到白球的概率为 ,故选:A.【点睛】本题考查了概率公式,用到的知识点为:概率等于所求情况数与总情况数之比11、B【分析】过A作AFOB于F,如图所示:根据已知条件得到AF=1,OF=1,OB=6,求得AOB=60,推出AOB是等边三角形,得到AOB=ABO=60,根据折叠的性质得到CED=OAB=60,求得OCE=DEB,根据相似三角形的性质得到BE

15、=OBOE=6=,设CE=a,则CA=a,CO=6a,ED=b,则AD=b,DB=6b,于是得到结论【详解】过A作AFOB于F,如图所示:A(1,1),B(6,0),AF=1,OF=1,OB=6,BF=1,OF=BF,AO=AB,tanAOB=,AOB=60,AOB是等边三角形,AOB=ABO=60,将OAB沿直线CD折叠,使点A恰好落在线段OB上的点E处,CED=OAB=60,OCE+COE=OCE+60=CED+DEB=60+DEB,OCE=DEB,CEOEDB,=,OE=,BE=OBOE=6=,设CE=a,则CA=a,CO=6a,ED=b,则AD=b,DB=6b,则,6b=10a5ab,

16、24a=10b5ab,得:24a6b=10b10a,即AC:AD=2:1故选:B【点睛】本题考查了翻折变换-折叠问题,相似三角形的判定和性质,等边三角形的判定和性质,证得AOB是等边三角形是解题的关键12、C【分析】先根据所给新定义运算求出分段函数解析式,再根据函数解析式来判断函数图象即可.【详解】解:ab,当x2时,函数图象在第一象限且自变量的值不等于2,当x2时,是反比例函数,函数图象在二、四象限.故应选C.【点睛】本题考查了分段函数及其图象,理解所给定义求出分段函数解析式是解题的关键.二、填空题(每题4分,共24分)13、k-1.【分析】若关于x的一元二次方程x2+2x-k=0没有实数根

17、,则=b2-4ac0,列出关于k的不等式,求得k的取值范围即可【详解】关于x的一元二次方程x2+2x-k=0没有实数根,=b2-4ac0,即22-41(-k)0,解这个不等式得:k-1故答案为:k-114、0.1【分析】由小亮每次投篮的投中的频率继而可估计出这名球员投一次篮投中的概率【详解】解:0.750.1,0.130.1,0.120.1,0.790.1,可以看出小亮投中的频率大都稳定在0.1左右,估计小亮投一次篮投中的概率是0.1,故答案为:0.1【点睛】本题比较容易,考查了利用频率估计概率大量反复试验下频率值即概率概率=所求情况数与总情况数之比15、5【分析】由矩形的性质可得AB=CD=

18、8,AD=BC=10,A=D=90,由折叠的性质可求BF=BC=10,EF=CE,由勾股定理可求AF的长,CE的长【详解】解:四边形ABCD是矩形AB=CD=8,AD=BC=10,A=D=90,将BCE沿BE折叠为BFE,在RtABF中,AF=6DF=AD-AF=4在RtDEF中,DF2+DE2=EF2=CE2,16+(8-CE)2=CE2,CE=5故答案为:5【点睛】本题考查了矩形的性质,折叠的性质,勾股定理,灵活运用这些性质进行推理是本题的关键16、5【分析】过D点作DHAE交EF于H点,证BDHBCE,FDHFAE,根据对应边成比例即可求解.【详解】过D点作DHAE交EF于H点,BDH=

19、BCE,BHD=BEC,BDHBCE同理可证:FDHFAEAD是ABC的中线BD=DC 又 故答案为:5【点睛】本题考查的是相似三角形,找到两队相似三角形之间的联系是关键.17、15或10【分析】作ADBC交BC(或BC延长线)于点D,分AB、AC位于AD异侧和同侧两种情况,先在RtABD中求得AD、BD的值,再在RtACD中利用勾股定理求得CD的长,继而就两种情况分别求出BC的长,根据三角形的面积公式求解可得【详解】解:作ADBC交BC(或BC延长线)于点D,如图1,当AB、AC位于AD异侧时,在RtABD中,B=30,AB=10,AD=ABsinB=5,BD=ABcosB=5,在RtACD

20、中,AC=2,CD=,则BC=BD+CD=6,SABC=BCAD=65=15;如图2,当AB、AC在AD的同侧时,由知,BD=5,CD=,则BC=BD-CD=4,SABC=BCAD=45=10综上,ABC的面积是15或10,故答案为15或10【点睛】本题主要考查解直角三角形,解题的关键是熟练掌握三角函数的运用、分类讨论思想的运算及勾股定理18、1【分析】根据点(x,y)关于原点对称的点是(-x,-y)列出方程,解出a,b的值代入计算即可【详解】解:,关于原点对称,解得,故答案为:1【点睛】本题考查了关于原点对称的点的坐标的特点,熟知点(x,y)关于原点对称的点是(-x,-y)是解题的关键三、解

21、答题(共78分)19、(1)120,补图见解析;(2)该区8000名学生中,每天户外体育活动的时间不足1小时的学生大约有2800名;(3)【分析】(1)根据A组的频数与频率可求出总人数,乘以B组的频率即可得a值,根据a值补全频数分布直方图即可;(2)用8000乘以每天户外体育活动的时间不足1小时的学生的频率和即可得答案;(3)画树状图得出所有可能的情况数和抽到1名男生和1名女生的情况数,利用概率公式即可得答案【详解】(1)被调查的学生总人数为200.05400,a4000.3120,故答案为:120,补全图形如下:(2)每天户外体育活动的时间不足1小时的学生大约有8000(0.05+0.3)2

22、800(名);(3)画树状图为:共有12种等可能的结果数,其中抽到1名男生和1名女生的可能性有6种P(抽到1名男生和1名女学生)【点睛】本题主要考查了树状图法或列表法求概率,以及频数分布直方图的运用,解题时注意:当有两个元素时,可用树形图列举,也可以列表列举一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确20、(1);(2)【分析】(1)利用待定系数法即可解决问题;(2)利用三角形的面积公式构建方程求出n,再利用待定系数法求出m的值即可;【详解】解:(1)点在反比例函数图象上,反比例函数的解析式为:(2)由题意:,.【点睛】本题考查反比例函数的应用,解题的关

23、键是熟练掌握待定系数法,学会构建方程解决问题,属于中考常考题型21、(1)x的值为90;(2)每件商品的售价定为95元时,每个月可获得最大利润,最大的月利润是2450元【解析】(1)直接利用每件利润销量2400,进而得出一元二次方程解出答案即可;(2)利用每件利润销量利润,先用x表示出每件的利润和销量,进而得出利润关于x的二次函数解析式,再利用二次函数的性质求最值即可【详解】解:(1)由题意可得:(x60)1002(x80)2400,整理得:x2190 x+90000,解得:x190,x2100(不合题意舍去),答:x的值为90;(2)设利润为w元,根据题意可得:w(x60)1002(x80)

24、2x2+380 x156002(x95)2+2450,故每件商品的售价定为95元时,每个月可获得最大利润,最大的月利润是2450元【点睛】本题考查的是二次函数的实际应用,这是二次函数应用问题中的常见题型,解决问题的关键是根据题意中的数量关系求出函数解析式.22、【分析】作DHAB于H,根据余弦的定义求出BC,根据正弦的定义求出CD,结合题意计算即可【详解】作DHAB于H,DBC=15,BD=20,由题意得,四边形ECBF和四边形CDHB是矩形,EF=BC=19.2,BH=CD=5,AEF=45,AF=EF=19.2,AB=AF+FH+HB=19.2+1.6+5=25.826m,答:楼房AB的高

25、度约为26m【点睛】本题考查的是解直角三角形的应用-仰角俯角问题和坡度坡角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键23、(1);(2)有三个:,理由见解析;【分析】(1)设,根据题意得到,由三角形的外角性质,即可求出x的值,从而得到答案;(2)根据黄金三角形的定义,即可得到答案;由可知,是黄金三角形,则根据比例关系,求出,然后求出AD的长度.【详解】解:(1),则,设,则,又,解得:,;(2)有三个:是黄金三角形;或,是黄金三角形;或,又,是黄金三角形;是黄金三角形,【点睛】本题考查了等腰三角形的性质以及黄金三角形的定义,三角形的内角和定理以及三角形的外角性质,解题的关键是

26、熟练掌握等腰三角形的性质,三角形的外角性质24、 (1),点坐标为;(2)点的坐标为;(3);当为-2时,四边形的面积最大,最大值为4.【分析】(1)用待定系数法即可求出抛物线解析式,然后化为顶点式求出点D的坐标即可;(2)利用轴对称-最短路径方法确定点M,然后用待定系数法求出直线AC的解析式,进而可求出点M的坐标;(3)先求出直线AD的解析式,表示出点F、G、P的坐标,进而表示出FG和FP的长度,然后即可判断出线段与的数量关系;根据割补法分别求出AED和ACD的面积,然后根据列出二次函数解析式,利用二次函数的性质求解即可.【详解】解:(1)由抛物线与轴交于,两点得,解得,故抛物线解析式为,由得点坐标为;(2)在直线上存在一点,到点的距离与到点的距离之和最小.根据抛物线对称性,使的值最小的点应为直线与对称轴的交点,当时,设直线解析式为直线,把、分别代入得,解之得:,直线解析式为,把代入得,即当点到点的距离与到点的距离之和最小时的坐标为;(3),理由为:设直线解析式为,把、分别代入直线得,解之得:,直线解析式为,则点的坐标为,同理的坐标为,则,;, ,AO=3,DM=2,SA

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论