黑龙江省双鸭山市2022年数学九上期末经典试题含解析_第1页
黑龙江省双鸭山市2022年数学九上期末经典试题含解析_第2页
黑龙江省双鸭山市2022年数学九上期末经典试题含解析_第3页
黑龙江省双鸭山市2022年数学九上期末经典试题含解析_第4页
黑龙江省双鸭山市2022年数学九上期末经典试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1如图,在中,将绕点旋转到的位置,使得,则的大小为( )ABCD2函数y=ax2+1与(a0)在同一平面直角坐标系中的图象可能是( )ABCD3如图,在平面直角坐标系中,函数与的图像相交于,两点,过点作轴的平行线,交函数的图像于点,连

2、接,交轴于点,则的面积为( )ABC2D4下列各选项的事件中,发生的可能性大小相等的是()A小明去某路口,碰到红灯,黄灯和绿灯B掷一枚图钉,落地后钉尖“朝上”和“朝下”C小亮在沿着RtABC三边行走他出现在AB,AC与BC边上D小红掷一枚均匀的骰子,朝上的点数为“偶数”和“奇数”5抛物线y=(x+2)23的顶点坐标是( )A(2,3)B(2,3)C(2,3)D(2,3)6抛物线的顶点坐标是( )A(2,9)B(2,-9)C(-2,9)D(-2,-9)7在一个箱子里放有1个自球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是( )A1BCD8设点和是反比例函数图象上的

3、两个点,当时,则一次函数的图象不经过的象限是A第一象限B第二象限C第三象限D第四象限9在中,若,则的长为( )ABCD10如图,在O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=2,CD=1,则BE的长是A5B6C7D8二、填空题(每小题3分,共24分)11一元二次方程配方后得,则的值是_12如图,在RtABC中,C90,AB10,BC6,则sinA_13如图,在中,.动点以每秒个单位的速度从点开始向点移动,直线从与重合的位置开始,以相同的速度沿方向平行移动,且分别与边交于两点,点与直线同时出发,设运动的时间为秒,当点移动到与点重合时,点和直线同时停止运动.在移动过程中,将绕点逆

4、时针旋转,使得点的对应点落在直线上,点的对应点记为点,连接,当时,的值为_. 14二次函数的图像经过原点,则a的值是_.15如图,从外一点引的两条切线、,切点分别是、,若,是弧上的一个动点(点与、两点不重合),过点作的切线,分别交、于点、,则的周长是_16关于的一元二次方程有两个不相等的实数根,则的取值范围是_17反比例函数的图象在每一象限,函数值都随增大而减小,那么的取值范围是_18如图,ABC的外心的坐标是_.三、解答题(共66分)19(10分)如图,在东西方向的海岸线l上有长为300米的码头AB,在码头的最西端A处测得轮船M在它的北偏东45方向上;同一时刻,在A点正东方向距离100米的C

5、处测得轮船M在北偏东22方向上(1)求轮船M到海岸线l的距离;(结果精确到0.01米) (2)如果轮船M沿着南偏东30的方向航行,那么该轮船能否行至码头AB靠岸?请说明理由(参考数据:sin220.375,cos220.927,tan220.404,1.1)20(6分)解方程:+3x4=021(6分)现如今,“垃圾分类”意识已深入人心,如图是生活中的四个不同的垃圾分类投放桶,分别写着:有害垃圾、厨余垃圾、其他垃圾、可回收垃圾其中小明投放了一袋垃圾,小丽投放了两袋垃圾(1)直接写出小明投放的垃圾恰好是“厨余垃圾”的概率;(2)求小丽投放的两袋垃圾不同类的概率22(8分)如图,在边长为1的正方形组

6、成的网格中,AOB的顶点均在格点上,其中点A(5,4),B(1,3),将AOB绕点O逆时针旋转90后得到A1OB1(1)画出A1OB1;(2)在旋转过程中点B所经过的路径长为_;(3)求在旋转过程中线段AB、BO扫过的图形的面积之和23(8分)如图是某货站传送货物的平面示意图. 原传送带与地面的夹角为,为了缩短货物传送距离,工人师傅欲增大传送带与地面的夹角,使其由改为,原传送带长为求:(1)新传送带的长度;(2)求的长度.24(8分)如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为“匀称三角形”,这条中线为“匀称中线”(1)如图,在RtABC中,C90,ACBC,若RtABC是“匀

7、称三角形”请判断“匀称中线”是哪条边上的中线,求BC:AC:AB的值(2)如图,ABC是O的内接三角形,ABAC,BAC45,SABC2,将ABC绕点A逆时针旋转45得到ADE,点B的对应点为D,AD与O交于点M,若ACD是“匀称三角形”,求CD的长,并判断CM是否为ACD的“匀称中线”25(10分)李明从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15立方米的无盖长方体运输箱,且此长方体运输箱底面的长比宽多2米,现已知购买这种铁皮每平方米需20元,问购买这张矩形铁皮共花了多少钱?26(10分)解方程(1)(x+1)2250(2)

8、x24x20参考答案一、选择题(每小题3分,共30分)1、B【分析】由平行线的性质可得CCACAB64,由折叠的性质可得ACAC,BABCAC,可得ACCCCA64,由三角形内角和定理可求解【详解】CCAB,CCACAB64,将ABC绕点A旋转到ABC的位置,ACAC,BABCAC,ACCCCA64,CAC18026452,故选:B【点睛】本题考查旋转的性质,平行线的判定,等腰三角形的性质,灵活运用旋转的性质是本题的关键2、B【解析】试题分析:分a0和a0两种情况讨论:当a0时,y=ax2+1开口向上,顶点坐标为(0,1);位于第一、三象限,没有选项图象符合;当a0时,y=ax2+1开口向下,

9、顶点坐标为(0,1);位于第二、四象限,B选项图象符合故选B考点:1.二次函数和反比例函数的图象和性质;2.分类思想的应用3、B【分析】先确定A、B两点坐标,然后再确定点C坐标,从而可求ABC的面积,再根据三角形中位线的性质可知答案.【详解】函数与的图像相交于,两点联立解得点A、B坐标分别是过点作轴的平行线,交函数的图像于点把代入到中得,解得点C的坐标为OA=OB,OEACOE是ABC的中位线故答案选B.【点睛】本题是一道综合题,考查了一次函数与反比例函数和三角形中位线性质,能够充分调动所学知识是解题的关键.4、D【分析】根据概率公式逐一判断即可.【详解】A、交通信号灯有“红、绿、黄”三种颜色

10、,但是红黄绿灯发生的时间一般不相同,它们发生的概率不相同,选项A不正确;B、图钉上下不一样,钉尖朝上的概率和钉尖着地的概率不相同,选项B不正确;C、“直角三角形”三边的长度不相同,小亮在沿着RtABC三边行走他出现在AB,AC与BC边上走,他出现在各边上的概率不相同,选项C不正确;D、小红掷一枚均匀的骰子,朝上的点数为“偶数”和“奇数”的可能性大小相等,选项D正确故选:D【点睛】此题考查的是概率问题,掌握根据概率公式分析概率的大小是解决此题的关键.5、D【解析】试题分析:抛物线y=(x+2)23为抛物线解析式的顶点式,抛物线顶点坐标是(2,3)故选D考点:二次函数的性质6、A【分析】把抛物线解

11、析式化为顶点式即可求得答案【详解】,顶点坐标为(2,9)故选:A【点睛】本题主要考查了二次函数的性质,掌握二次函数的顶点式是解答此题的关键,即在中,对称轴为x=h,顶点坐标为(h,k)7、C【解析】结合题意求得箱子中球的总个数,再根据概率公式即可求得答案.【详解】依题可得,箱子中一共有球:(个),从箱子中任意摸出一个球,是白球的概率.故答案为:C.【点睛】此题考查了概率公式的应用用到的知识点为:概率=所求情况数与总情况数之比8、A【解析】点和是反比例函数图象上的两个点,当1时,即y随x增大而增大,根据反比例函数图象与系数的关系:当时函数图象的每一支上,y随x的增大而减小;当时,函数图象的每一支

12、上,y随x的增大而增大故k1根据一次函数图象与系数的关系:一次函数的图象有四种情况:当,时,函数的图象经过第一、二、三象限;当,时,函数的图象经过第一、三、四象限;当,时,函数的图象经过第一、二、四象限;当,时,函数的图象经过第二、三、四象限因此,一次函数的,故它的图象经过第二、三、四象限,不经过第一象限故选A9、A【分析】根据余弦的定义和性质求解即可【详解】,故答案为:A【点睛】本题考查了锐角三角函数的问题,掌握余弦的定义和性质是解题的关键10、B【分析】根据垂径定理求出AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可【详解】解:半径OC垂直于弦AB,AD=DB= AB= 在R

13、tAOD中,OA2=(OC-CD)2+AD2,即OA2=(OA-1)2+( )2,解得,OA=4OD=OC-CD=3,AO=OE,AD=DB,BE=2OD=6故选B【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键二、填空题(每小题3分,共24分)11、1【分析】将原方程进行配方,然后求解即可.【详解】解: -m+1=nm+n=1故答案为:1【点睛】本题考查配方法,掌握配方步骤正确计算是本题的解题关键.12、【分析】根据锐角的正弦为对边比斜边,可得答案【详解】解:在RtABC中,C90,AB10,BC6,则sinA,故答案为:【点睛】本题考查了求解三角函数,属于简

14、单题,熟悉正弦三角函数的定义是解题关键.13、【分析】由题意得CP=10-3t,EC=3t,BE=16-3t,又EF/AC可得ABCFEB,进而求得EF的长;如图,由点P的对应点M落在EF上,点F的对应点为点N,可知PEF=MEN,由EF/ACC=90可以得出PEC=NEG,又由,就有CBN=CEP.可以得出CEP=NEP=B,过N做NGBC,可得EN=BN,最后利用三角函数的关系建立方程求解即可;【详解】解:设运动的时间为秒时;由题意得:CP=10-3t,EC=3t,BE=16-3tEF/ACABCFEB EF= 在RtPCE中,PE= 如图:过N做NGBC,垂足为G将绕点逆时针旋转,使得点

15、的对应点落在直线上,点的对应点记为点,PEF=MEN,EF=EN,又EF/ACC=CEF=MEB=90PEC=NEG又CBN=CEP.CBN=NEGNGBCNB=EN,BG= NB=EN=EF=CBN=NEG,C=NGB=90PCENGB=,解得t=或-(舍)故答案为.【点睛】本题考查了相似三角形的判定及性质的运用、三角函数值的运用、勾股定理的运用,灵活利用相似三角形的性质和勾股定理是解答本题的关键.14、1【分析】根据题意将(0,0)代入二次函数,即可得出a的值【详解】解:二次函数的图象经过原点,=0,a=1,a+10,a-1,a的值为1故答案为:1【点睛】本题考查二次函数图象上点的特征,图

16、象过原点,可得出x=0,y=0,从而分析求值15、【解析】由切线长定理得CD=AD,CE=BE,PA=PB,表示出PED的周长即可解题.【详解】解:由切线长定理得CD=AD,CE=BE,PA=PB;所以PED的周长=PD+DC+CE+PE=PD+AD+BE+PE=PA+PB=2PA=16cm【点睛】本题考查了圆的切线,属于简单题,熟悉圆的切线长定理是解题关键.16、【分析】根据根的判别式即可求出答案;【详解】解:由题意可知: 解得:故答案为:【点睛】本题考查一元二次方程根的判别式,解题的关键是熟练掌握一元二次方程根的判别式并应用17、m-1【分析】根据比例系数大于零列式求解即可【详解】由题意得

17、m+10,m-1故答案为:m-1【点睛】本题考查了反比例函数的图象与性质,反比例函数(k是常数,k0)的图象是双曲线,当k0,反比例函数图象的两个分支在第一、三象限,在每一象限内,y随x的增大而减小;当 k0,反比例函数图象的两个分支在第二、四象限,在每一象限内,y随x的增大而增大18、【解析】试题解析:ABC的外心即是三角形三边垂直平分线的交点,作图得:EF与MN的交点O即为所求的ABC的外心,ABC的外心坐标是(2,1)三、解答题(共66分)19、(1)167.79;(2)能.理由见解析.【分析】(1)过点M作MDAC交AC的延长线于D,设DM=x由三角函数表示出CD和AD的长,然后列出方

18、程,解方程即可;(2)作DMF=30,交l于点F利用解直角三角形求出DF的长度,然后得到AF的长度,与AB进行比较,即可得到答案.【详解】解:(1)过点M作MDAC交AC的延长线于D,设DM=x在RtCDM中,CD = DMtanCMD= xtan22,又在RtADM中,MAC=45,AD=DM=x,AD=AC+CD=100+ xtan22,100+ xtan22=x (米)答:轮船M到海岸线l的距离约为167.79米 (2)作DMF=30,交l于点F在RtDMF中,有:DF= DMtanFMD= DMtan30=DM96.87米AF=AC+CD+DF=DM+DF167.79+96.87=26

19、4.662该轮船能行至码头靠岸【点睛】本题考查了方向角问题注意准确构造直角三角形是解此题的关键20、=4,=1.【分析】首先根据十字相乘法将原方程转化成两个多项式的积,然后进行解方程.【详解】解:+3x4=0 (x+4)(x1)=0 解得:=4,=1.【点睛】本题考查解一元二次方程21、(1);(2)【分析】(1)直接利用概率公式求出小明投放的垃圾恰好是“厨余垃圾”的概率;(2)首先利用树状图法列举出所有可能,进而利用概率公式求出答案【详解】解:(1)将有害垃圾、厨余垃圾、其他垃圾、可回收垃圾分别记为A,B,C,D,小明投放了一袋垃圾,小明投放的垃圾恰好是B类:厨余垃圾的概率为:;(2)画树状

20、图如下: 由树状图知,小丽投放的垃圾共有16种等可能结果,其中小丽投放的两袋垃圾不同类的有12种结果,所以小丽投放的两袋垃圾不同类的概率为【点睛】本题考查树状图法求概率,正确利用列举出所有可能是解题关键22、(1)画图见解析;(2);(3).【解析】试题分析:(1)根据网格结构找出点A、B绕点O逆时针旋转90后的对应点A1、B1的位置,然后顺次连接即可;(2)利用勾股定理列式求OB,再利用弧长公式计算即可得解;(3)利用勾股定理列式求出OA,再根据AB所扫过的面积=S扇形A1OA+SA1B1O-S扇形B1OB-SAOB=S扇形A1OA-S扇形B1OB求解,再求出BO扫过的面积=S扇形B1OB,

21、然后计算即可得解试题解析:(1)A1OB1如图所示;(2)由勾股定理得,BO=,所以,点B所经过的路径长=(3)由勾股定理得,OA=,AB所扫过的面积=S扇形A1OA+SA1B1O-S扇形B1OB-SAOB=S扇形A1OA-S扇形B1OBBO扫过的面积=S扇形B1OB,线段AB、BO扫过的图形的面积之和=S扇形A1OA-S扇形B1OB+S扇形B1OB,=S扇形A1OA,=考点:1.作图-旋转变换;2.勾股定理;3.弧长的计算;4.扇形面积的计算23、(1);(2)【分析】(1)在构建的直角三角形中,首先求出两个直角三角形的公共直角边,进而在RtACD中,求出AC的长(2)利用求出BD, 利用求

22、出CD,故可求解.【详解】解:(1), 在中,在中,.(2)在中,在中,.【点睛】考查了坡度坡角问题,应用问题尽管题型千变万化,但关键是设法化归为解直角三角形问题,必要时应添加辅助线,构造出直角三角形在两个直角三角形有公共直角边时,先求出公共边的长是解答此类题的基本思路24、(1) “匀称中线”是BE,它是AC边上的中线,BC:AC:AB;(2)CDa,CM不是ACD的“匀称中线”理由见解析.【分析】(1)先作出RtABC的三条中线AD、BE、CF,然后利用匀称中线的定义分别验证即可得出答案;设AC2a,利用勾股定理分别把BC,AB的长度求出来即可得出答案.(2)由知:AC:AD:CD,设AC,则AD2a,CD,过点C作CHAB,垂足为H,利用的面积建立一个关于a的方程,解方程即可求出CD的长度;假设CM是ACD的“匀称中线”,看能否与已知的定理和推论相矛盾,如果能,则说明假设不成立,如果不能推出矛盾,说明假设成立.【详解】(1)如图,作RtABC的三条中线AD、BE、CF,ACB90,CF,即CF不是“匀称中线”又在RtACD中,ADACBC,即AD不是“匀称中线”“匀称中线”是BE,它是AC边上的中线,设AC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论