




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1在平面直角坐标系中,将点A(1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是( )A(4,2)B(2,2)C(2,2)D(2,2)2
2、以下五个图形中,是中心对称图形的共有()A2个B3个C4个D5个3如图,矩形ABCD中,连接AC,延长BC至点E,使,连接DE,若,则E的度数是( )A65B60C50D404两个连续奇数的积为323,求这两个数.若设较小的奇数为,则根据题意列出的方程正确的是( )ABCD5下列图形中是中心对称图形又是轴对称图形的是( )ABCD6抛物线y =2 x23与两坐标轴的公共点个数为( )A0个B1个C2个D3个7若两个相似三角形的相似比是1:2,则它们的面积比等于()A1:B1:2C1:3D1:48若反比例函数的图象过点(-2,1),则这个函数的图象一定过点( )A(2,-1)B(2,1)C(-2
3、,-1)D(1,2)9设,是抛物线上的三点,则的大小关系为()ABCD10若点在抛物线上,则的值( )A2021B2020C2019D2018二、填空题(每小题3分,共24分)11分解因式:_12如图,已知中,点、分别是边、上的点,且,且,若,那么_13一元二次方程5x214x的一次项系数是_14在平面直角坐标系中,解析式为的直线、解析式为的直线如图所示,直线交轴于点,以为边作第一个等边三角形,过点作轴的平行线交直线于点,以为边作第二个等边三角形,顺次这样做下去,第2020个等边三角形的边长为_15有4张看上去无差别的卡片,上面分别写着2,3,4,6,小红随机抽取1张后,放回并混在一起,再随机
4、抽取1张,则小红第二次取出的数字能够整除第一次取出的数字的概率为_16因式分解:ax3yaxy3_17在单词(数学)中任意选择-一个字母,选中字母“”的概率为_18如图,在ABC中,BC=12,BC上的高AH=8,矩形DEFG的边EF在边BC上,顶点D、G分别在边AB、AC上设DE,矩形DEFG的面积为,那么关于的函数关系式是_ (不需写出x的取值范围)三、解答题(共66分)19(10分)如图,在RtABC中,ACB=90,以AC为直径的O与AB边交于点D,过点D作O的切线交BC于点E(1)求证:BE=EC(2)填空:若B=30,AC=2,则DE=_;当B=_度时,以O,D,E,C为顶点的四边
5、形是正方形20(6分)宋家州主题公园拟修建一座柳宗元塑像,如图所示,柳宗元塑像(塑像中高者)在高的假山上,在处测得塑像底部的仰角为,再沿方向前进到达处,测得塑像顶部的仰角为,求柳宗元塑像的高度.(精确到.参考数据:,)21(6分)阅读下面材料,完成(1)-(3)题.数学课上,老师出示了这样一道题: 如图,ABC中,D为BC中点,且AD=AC,M为AD中点,连结CM并延长交AB于N.探究线段AN、MN、CN之间的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现线段AN、AB之间存在某种数量关系.”小强:“通过倍长不同的中线,可以得到不同的结论,但都是正确的,大家
6、就大胆的探究吧.”小伟:“通过构造、证明相似三角形、全等三角形,就可以将问题解决.”.老师: “若其他条件不变,设AB=a,则可以用含a的式子表示出线段CM的长.”(1)探究线段AN、AB之间的数量关系,并证明;(2)探究线段AN、MN、CN之间的数量关系,并证明;(3)设AB=a,求线段CM的长(用含a的式子表示).22(8分)先锋中学数学课题组为了了解初中学生阅读数学教科书的现状,随机抽取某校部分初中学生进行调查,调查结果分为“重视”、“一般”、“不重视”、“说不清楚”四种情况(依次用A、B、C、D表示),依据相关数据绘制成以下不完整的统计表和统计图,请根据图表中的信息解答下列问题:类别频
7、数频率重视a0.25一般600.3不重视bc说不清楚100.05(1)求样本容量及表格中a,b,c的值,并补全统计图;(2)若该校共有2000名学生,请估计该校“不重视阅读数学教科书”的学生人数23(8分)春节期间,支付宝“集五福”活动中的“集五福”福卡共分为5种,分别为富强福、和谐福、友善福、爱国福、敬业福,从国家、社会和个人三个层面体现了社会主义核心价值观的价值目标.(1)小明一家人春节期间参与了支付宝“集五福”活动,小明和姐姐都缺一个“敬业福”,恰巧爸爸有一个可以送给他们其中一个人,两个人各设计了一个游戏,获胜者得到“敬业福”在一个不透明盒子里放入标号分别为1,2,3,4的四个小球,这些
8、小球除了标号数字外都相同,将小球摇匀小明的游戏规则是:从盒子中随机摸出一个小球,摸到标号数字为奇数小球,则判小明获胜,否则,判姐姐获胜请判断,此游戏规则对小明和姐姐公平吗?说明理由姐姐的游戏规则是:小明从盒子中随机摸出一个小球,记下标号数字后放回盒里,充分摇匀后,姐姐再从盒中随机摸出一个小球,并记下标号数字.若两次摸到小球的标号数字同为奇数或同为偶数,则判小明获胜,若两次摸到小球的标号数字为一奇一偶,则判姐姐获胜请用列表法或画树状图的方法进行判断此游戏规则对小明和姐姐是否公平.(2)“五福”中体现了社会主义核心价值观的价值目标的个人层面有哪些?24(8分)在一个不透明的布袋里装有4个标有1,2
9、,3,4的小球,它们的形状、大小、质地完全相同,小李从布袋里随机取出一个小球,记下数字为x,小张在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点Q的坐标(x,y)(1)画树状图或列表,写出点Q所有可能的坐标;(2)求点Q(x,y)在函数y=x+5图象上的概率25(10分)某活动小组对函数的图象性质进行探究,请你也来参与(1)自变量的取值范围是_;(2)表中列出了、的一些对应值,则_;(3)依据表中数据画出了函数图象的一部分,请你把函数图象补充完整;01233003(4)就图象说明,当方程共有4个实数根时,的取值范围是_26(10分)如图,有一个三等分数字转盘,小红先转动转盘,指针
10、指向的数字记下为,小芳后转动转盘,指针指向的数字记下为,从而确定了点的坐标,(若指针指向分界线,则重新转动转盘,直到指针指向数字为止)(1)小红转动转盘,求指针指向的数字2的概率;(2)请用列举法表示出由,确定的点所有可能的结果.(3)求点在函数图象上的概率.参考答案一、选择题(每小题3分,共30分)1、D【分析】首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案【详解】解:点A(-1,2)向右平移3个单位长度得到的B的坐标为(-1+3,2),即(2,2),则点B关于x轴的对称点C的坐标是(2,-2),故答案为D2、B【分析】根据中心对
11、称图形的概念:把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,进行判断【详解】解:从左起第2、4、5个图形是中心对称图形.故选:B【点睛】本题考查了中心对称的定义:把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.3、A【分析】连接BD,与AC相交于点O,则BD=AC=BE,得BDE是等腰三角形,由OB=OC,得OBC=50,即可求出E的度数.【详解】解:如图,连接BD,与AC相交于点O,BD=AC=BE,OB=OC,BDE是等腰三角形,OBC=OCB,ABC=90,OBC=,;故选择:A.【
12、点睛】本题考查了矩形的性质,等腰三角形的判定和性质,三角形内角和定理,以及直角三角形两个锐角互余,解题的关键是正确作出辅助线,构造等腰三角形进行解题.4、B【分析】根据连续奇数的关系用x表示出另一个奇数,然后根据乘积列方程即可【详解】解:根据题意:另一个奇数为:x2故选B【点睛】此题考查的是一元二次方程的应用,掌握数字之间的关系是解决此题的关键5、A【分析】根据中心对称图形和轴对称图形的性质对各项进行判断即可【详解】根据中心对称图形和轴对称图形的性质,只有下图符合故答案为:A【点睛】本题考查了中心对称图形和轴对称图形,掌握中心对称图形和轴对称图形的定义和性质是解题的关键6、B【分析】根据一元二
13、次方程2 x23=1的根的判别式的符号来判定抛物线y =2 x23与x轴的交点个数,当x=1时,y=3,即抛物线y =2 x23与y轴有一个交点【详解】解:当y=1时,2 x23=1 =12-423=-241, 一元二次方程2 x23=1没有实数根,即抛物线y =2 x23与x轴没有交点; 当x=1时,y=3,即抛物线y =2 x23与y轴有一个交点, 抛物线y =2 x23与两坐标轴的交点个数为1个 故选B【点睛】本题考查了抛物线与x轴、y轴的交点注意,本题求得是“抛物线y =2 x23与两坐标轴的交点个数”,而非“抛物线y =2 x23与x轴交点的个数”7、D【分析】根据相似三角形面积的比
14、等于相似比的平方解答即可【详解】解:两个相似三角形的相似比是1:2,这两个三角形们的面积比为1:4,故选:D【点睛】此题考查相似三角形的性质,掌握相似三角形面积的比等于相似比的平方是解决此题的关键8、A【解析】先把(- 2,1)代入y=求出k得到反比例函数解析式为y=,然后根据反比例函数图象上点的坐标特征,通过计算各点的横纵坐标的积进行判断【详解】把(-2,1)代入y=得k=-21=-2,所以反比例函数解析式为y=,因为2(-1)=-2, 21=2,-2(-1)=2,12=2,所以点(2,-1)在反比例函数y=的图象上故选A【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常
15、数,k0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k9、D【分析】根据二次函数的性质得到抛物线的开口向上,对称轴为直线x-2,然后根据三个点离对称轴的远近判断函数值的大小【详解】,a10,抛物线开口向上,对称轴为直线x-2,离直线x-2的距离最远,离直线x-2的距离最近,故选:D【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式也考查了二次函数的性质10、B【分析】将P点代入抛物线解析式得到等式,对等式进行适当变形即可【详解】解:将代入中得所以故选:B【点睛】本题考查二次函数上点的坐标特征,等式的性质能根据等式的性质进行适当变形是解决此
16、题的关键二、填空题(每小题3分,共24分)11、【分析】直接提取公因式即可【详解】解:故答案为: 12、【分析】根据平行线分线段成比例定理列出比例式,得到AE:EC=AD:DB=1:2,BF:FC=AE:EC=1:2,进行分析计算即可【详解】解:DEBC,AE:EC=AD:DB=1:2,EFAB,BF:FC=AE:EC=1:2,CF=9,BF=.故答案为:【点睛】本题考查的是平行线分线段成比例定理,熟练掌握并灵活运用定理并找准对应关系是解题的关键13、-4【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a0)在一般形式中ax2叫二次项,bx叫一次项,c是常数项其中a,
17、b,c分别叫二次项系数,一次项系数,常数项【详解】解:5x214x,方程整理得:5x24x10,则一次项系数是4,故答案为:4【点睛】本题考查了一元二次方程的一般形式,解答本题要通过移项,转化为一般形式,注意移项时符号的变化14、【分析】由题意利用一次函数的性质以及等边三角形性质结合相似三角形的性质进行综合分析求解.【详解】解:将代入分别两个解析式可以求出AO=1,为边作第一个等边三角形,BO=1,过B作x轴的垂线交x轴于点D,由可得,即,即B的横轴坐标为,与轴平行,将代入分别两个解析式可以求出,,,即相邻两个三角形的相似比为2,第2020个等边三角形的边长为.故答案为:.【点睛】本题考查一次
18、函数图形的性质以及等边三角形性质和相似三角形的性质的综合问题,熟练掌握相关知识并运用数形结合思维分析是解题的关键.15、 【分析】画树状图展示所有16种等可能的结果数,再找出小红第二次取出的数字能够整除第一次取出的数字的结果数,然后根据概率公式求解【详解】解:画树状图为:共有16种等可能的结果数,其中小红第二次取出的数字能够整除第一次取出的数字的结果数为7,所以小红第二次取出的数字能够整除第一次取出的数字的概率=故答案为【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率16、axy(x+
19、y)(xy)【分析】提取公因式axy后剩余的项满足平方差公式,再运用平方差公式即可;【详解】解:ax3yaxy3axy= axy(x+y)(xy);故答案为:axy(x+y)(xy)【点睛】本题主要考查了提公因式法与公式法的运用,掌握提公因式法,平方差公式是解题的关键.17、【分析】由题意可知总共有11个字母,求出字母的个数,利用概率公式进行求解即可【详解】解:共有个字母,其中有个,所以选中字母“”的概率为.故答案为:.【点睛】本题考查概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.18、;【分析】根据题意和三角形相似,可以用含
20、的代数式表示出,然后根据矩形面积公式,即可得到与的函数关系式【详解】解:四边形是矩形,上的高,矩形的面积为,得,故答案为:【点睛】本题考查根据实际问题列二次函数关系式、相似三角形的判定与性质,解答本题的关键是明确题意,利用数形结合的思想解答三、解答题(共66分)19、(1)见解析;(2)3;1.【分析】(1)证出EC为O的切线;由切线长定理得出EC=ED,再求得EB=ED,即可得出结论;(2)由含30角的直角三角形的性质得出AB,由勾股定理求出BC,再由直角三角形斜边上的中线性质即可得出DE;由等腰三角形的性质,得到ODA=A=1,于是DOC=90然后根据有一组邻边相等的矩形是正方形,即可得到
21、结论【详解】(1)证明:连接DOACB=90,AC为直径,EC为O的切线;又ED也为O的切线,EC=ED,又EDO=90,BDE+ADO=90,BDE+A=90又B+A=90,BDE=B,BE=ED,BE=EC;(2)解:ACB=90,B=30,AC=2,AB=2AC=4,BC=6,AC为直径,BDC=ADC=90,由(1)得:BE=EC,DE=BC=3,故答案为3;当B=1时,四边形ODEC是正方形,理由如下:ACB=90,A=1,OA=OD,ADO=1,AOD=90,DOC=90,ODE=90,四边形DECO是矩形,OD=OC,矩形DECO是正方形故答案为1【点睛】本题考查了圆的切线性质、
22、解直角三角形的知识、切线长定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型20、柳宗元塑像的高度约为.【分析】在中,利用正切函数的定义求得AC 的长,继而求得BC的长,在中,同样利用正切函数的定义求得CD的长,从而求得结果.【详解】在中,在中,答:柳宗元塑像的高度约为【点睛】本题考查了解直角三角形的应用俯角仰角问题,要先将实际问题抽象成数学问题,分别在两个不同的直角三角形中,借助三角函数的知识,研究角和边的关系.21、(1)(2)或,证明见解析(3)【分析】(1)过B做BQNC交AD延长线于Q,构造出全等三角形BDQCDM(ASA)、相似三角形ANMABQ,
23、再利用全等和相似的性质即可得出结论;(2)延长AD至H,使AD=DH,连接CH,可得ABDHCD(SAS),进一步可证得,得到,然后证明,即可得到结论:;延长CM至Q,使QM=CM,连接AQ,延长至,使可得、四边形为平行四边形,进一步可证得,即可得到结论;(3)在(1)、(2)的基础之上,用含的式子表示出、,从而得出【详解】(1)过B做BQNC交AD延长线于Q,如图:D为BC中点易得BDQCDM(ASA)DQ=DM,M为AD中点,AM=DM=DQ,BQNC,ANMABQ,;(2)结论:,证明:延长AD至H,使AD=DH,连接CH,如图:易得ABDHCD(SAS) ,H=BAH,ABHC,设AM
24、=x,则AD=AC=2x,AH=4x,;,;结论:;证明:延长至,使,连接, 延长至,使,如图:则,则四边形为平行四边形, ,; (3)由(1)得,由(2)得, .【点睛】本题考查了全等三角形的判定和性质、相似三角形的判定和性质,合理的添加辅助线是解题的关键22、(1)样本容量为200,a50,b80,c0.4,图见解析;(2)800人【分析】(1)由“一般”的频数及其频率可得样本容量,再根据频率频数样本容量及频数之和等于总人数求解可得;(2)用总人数乘以样本中“不重视”对应的频率即可得【详解】(1)样本容量为600.3200,则a2000.2550,b20050601080,c802000.
25、4,补全条形图如下:(2)估计该校“不重视阅读数学教科书”的学生人数为20000.4800(人)【点睛】本题主要考查了频数分布直方表以及条形统计图和利用样本估计总体等知识.23、(1)游戏1对小明和姐姐是公平的;游戏2对小明和姐姐是公平的;(2)友善福、爱国福、敬业福.【分析】(1)在两种游戏中,分别求出小明和姐姐获胜的概率,即可得答案;(2)分别从国家、社会和个人三个层面解答即可得答案.【详解】(1)小明的游戏:共有4种等可能结果,一次摸到小球的标号数字为奇数或为偶数的各有2种,小明获胜的概率为,姐姐获胜的概率为,游戏1对小明和姐姐是公平的;姐姐的游戏:画树状图如下: 共有16种可能情况,其中两次摸到小球的标号数字同为奇数或同为偶数的共有8种,两次摸到小球的标号数字为一奇一偶的结果也共有8种,小明获胜的概率为,姐姐获胜的概率为,游戏2对小明和姐姐是公平的. (2)“五福”中国家层面是:富强福,“五福”中社会层面是:和谐福,“五福”中个人层面是:友善福、爱国福、敬业福【点睛】本题考查游戏公平性的判断,判断游戏的公平性要计算每个参与者获胜的概率,概率相等则游戏公平,否则游戏不公平,用到的知识点为:概率=所求情况数与总情况数之比.24、(1)画树状图或列表见解析;(2).【解析】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 诊所引流现场管理制度
- 诊疗技术授权管理制度
- 调解中心监督管理制度
- 财政特设专户管理制度
- 货代公司各类管理制度
- 货物装卸安全管理制度
- 货船安全生产管理制度
- 2025年中国感应式皂液器行业市场全景分析及前景机遇研判报告
- 2025年中国动作感应手柄行业市场全景分析及前景机遇研判报告
- 液压工具质保协议书范本
- 儿童用药合理使用课件
- 2025-2030年中国发泡包装行业市场现状供需分析及投资评估规划分析研究报告
- 2025至2030中国材料疲劳试验机行业项目调研及市场前景预测评估报告
- 2025年陕西、山西、宁夏、青海四省(陕晋宁青)高考 生物真题试卷 附答案
- 2024年西昌市教育和体育局考核聘用公立幼儿园教师真题
- 2025设备租赁合同版本范文
- 2025年浙江杭州钱塘区和达能源有限公司招聘笔试冲刺题(带答案解析)
- 2025年衣物清洁多元化发展趋势白皮书-天猫家清第一财经商业数据中心
- 冷链物流园建设项目投融资与财务方案
- 保险业务员分级考试试题及答案
- 2024统编版七年级道德与法治下册期末测试卷(含答案)
评论
0/150
提交评论