版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1如图,AB是O的直径,点C,D在O上若ABD=55,则BCD的度数为()A25B30C35D402将二次函数的图象先向左平移4个单位长度,再向下平移1个单位长度后,所得新的图象的函数表达式为( )ABCD3如图,点A,B,C在O上,A=36,C=28,则B=()A100B72C64D364如图,将
2、ABC沿BC边上的中线AD平移到ABC的位置,已知ABC的面积为9,阴影部分三角形的面积为1若AA=1,则AD等于()A2B3CD5矩形ABCD中,AB10,点P在边AB上,且BP:AP=4:1,如果P是以点P 为圆心,PD长为半径的圆,那么下列结论正确的是( )A点B、C均在P外B点B在P外,点C在P内C点B在P内,点C在P外D点B、C均在P内6已知O半径为3,M为直线AB上一点,若MO=3,则直线AB与O的位置关系为()A相切B相交C相切或相离D相切或相交7如图,点D是ABC的边AB上的一点,过点D作BC的平行线交AC于点E,连接BE,过点D作BE的平行线交AC于点F,则下列结论错误的是(
3、)ABCD8已知2x=3y,则下列比例式成立的是( )ABCD9下列关于x的方程是一元二次方程的有( )ax2+bx+c=0 x2=0 A和B和C和D和10抛物线上部分点的横坐标、纵坐标的对应值如下表:3210160466容易看出,是它与轴的一个交点,那么它与轴的另一个交点的坐标为( )ABCD11用一个4倍放大镜照ABC,下列说法错误的是( )AABC放大后,B是原来的4倍BABC 放大后,边AB是原来的4倍CABC放大后,周长是原来的4倍DABC 放大后,面积是原来的16倍12若,则的值是( )ABCD二、填空题(每题4分,共24分)13如图,AD:DBAE:EC,若ADE58,则B_14
4、已知,则_15如图在中,以点为圆心,的长为半径作弧,交于点,为的中点,以点为圆心,长为半径作弧,交于点,若,则阴影部分的面积为_16如图,P是反比例函数y的图象上的一点,过点P分别作x轴、y轴的垂线,得图中阴影部分的面积为3,则这个反比例函数的比例系数是_17钟表的轴心到分钟针端的长为那么经过分钟,分针针端转过的弧长是_.18数据1、2、3、2、4的众数是_三、解答题(共78分)19(8分)已知:在中,(1)求作:的外接圆(要求:尺规作图,保留作图痕迹,不写作法)(2)若的外接圆的圆心到边的距离为4,则 20(8分)如图,AB为O的直径,C为O上一点,AD和过C点的直线互相垂直,垂足为D,且A
5、C平分DAB(1)求证:DC为O的切线;(2)若DAB60,O的半径为3,求线段CD的长21(8分)如图,BM是以AB为直径的O的切线,B为切点,BC平分ABM,弦CD交AB于点E,DEOE(1)求证:ACB是等腰直角三角形;(2)求证:OA2OEDC:(3)求tanACD的值22(10分)如图,在RtABC中,C90,AC6cm,BC8cm点P从B出发,沿BC方向,以1cm/s的速度向点C运动,点Q从A出发,沿AB方向,以2cm/s的速度向点B运动;若两点同时出发,当其中一点到达端点时,两点同时停止运动,设运动时间为t(s)(t0),BPQ的面积为S(cm2)(1)t2秒时,则点P到AB的距
6、离是 cm,S cm2;(2)t为何值时,PQAB;(3)t为何值时,BPQ是以BP为底边的等腰三角形;(4)求S与t之间的函数关系式,并求S的最大值23(10分)关于的一元二次方程有两个不相等且非零的实数根,探究满足的条件小华根据学习函数的经验,认为可以从二次函数的角度研究一元二次方程的根的符号。下面是小华的探究过程:第一步:设一元二次方程对应的二次函数为;第二步:借助二次函数图象,可以得到相应的一元二次方程中满足的条件,列表如下表。方程两根的情况对应的二次函数的大致图象满足的条件方程有两个不相等的负实根_方程有两个不相等的正实根 _(1)请将表格中补充完整;(2)已知关于的方程,若方程的两
7、根都是正数,求的取值范围.24(10分)已知在ABC中,ABBC,以AB为直径的O分别交AC于D,BC于E,连接ED(1)求证:EDDC;(2)若CD6,EC4,求AB的长25(12分)解分式方程:26(1)解方程:;(2)计算:参考答案一、选择题(每题4分,共48分)1、C【详解】解:连接AD,AB是O的直径,ADB=90ABD=55,BAD=9055=35,BCD=BAD=35故选C【点睛】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键2、B【分析】根据题意直接利用二次函数平移规律进而判断得出选项【详解】解:的图象向左平移4个单位长度,再向下平移1个单位长度,平移后的函
8、数关系式是:故选:B【点睛】本题考查二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式3、C【详解】试题分析:设AC和OB交于点D,根据同弧所对的圆心角的度数等于圆周角度数2倍可得:O=2A=72,根据C=28可得:ODC=80,则ADB=80,则B=180-A-ADB=180-36-80=64,故本题选C4、A【解析】分析:由SABC=9、SAEF=1且AD为BC边的中线知SADE=SAEF=2,SABD=SABC=,根据DAE
9、DAB知,据此求解可得详解:如图,SABC=9、SAEF=1,且AD为BC边的中线,SADE=SAEF=2,SABD=SABC=,将ABC沿BC边上的中线AD平移得到ABC,AEAB,DAEDAB,则,即,解得AD=2或AD=-(舍),故选A点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点5、A【分析】根据BP=4AP和AB的长度求得AP的长度,然后利用勾股定理求得圆P的半径PD的长;根据点B、C到P点的距离判断点P与圆的位置关系即可【详解】根据题意画出示意图,连接PC,PD,如图所示AB=10,点P在边AB上,BP:AP=4:1A
10、P=2 , BP=8又AD=圆的半径PD=PC=PB=86, PC=6 点B、C均在P外故答案为:A【点睛】本题考查了点和圆的位置关系的判定,根据点和圆心之间的距离和半径的大小关系作出判断即可6、D【解析】试题解析“因为垂线段最短,所以圆心到直线的距离小于等于1此时和半径1的大小不确定,则直线和圆相交、相切都有可能故选D点睛:直线和圆的位置关系与数量之间的联系:若dr,则直线与圆相交;若d=r,则直线于圆相切;若dr,则直线与圆相离7、D【分析】由平行线分线段成比例和相似三角形的性质进行判断.【详解】DE/BC, ,故A正确;DF/BE,ADFABF, ,故B正确;DF/BE, , ,故C正确
11、;DE/BC,ADEABC,,DF/BE,故D错误.故选D.【点睛】本题考查平行线分线段成比例性质,相似三角形的性质,由平行线得出比例关系是关键.8、C【分析】把各个选项依据比例的基本性质,两内项之积等于两外项之积,已知的比例式可以转化为等积式2x=3y,即可判断【详解】A变成等积式是:xy=6,故错误;B变成等积式是:3x+3y=4y,即3x=y,故错误;C变成等积式是:2x=3y,故正确;D变成等积式是:5x+5y=3x,即2x+5y=0,故错误故选C【点睛】本题考查了判断两个比例式是否能够互化的方法,即转化为等积式,判断是否相同即可9、A【解析】根据一元二次方程的定义进行解答即可【详解】
12、ax2+bx+c=0,当a=0时,该方程不是一元二次方程;x2=0符合一元二次方程的定义;符合一元二次方程的定义;是分式方程综上所述,其中一元二次方程的是和故选A【点睛】本题考查了一元二次方程的定义,利用了一元二次方程的概念只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a0)特别要注意a0的条件这是在做题过程中容易忽视的知识点10、C【分析】根据(0,6)、(1,6)两点求得对称轴,再利用对称性解答即可【详解】抛物线经过(0,6)、(1,6)两点,对称轴x;点(2,0)关于对称轴对称点为(3,0),因此它与x轴的另一个交点的坐标为(3,0)故选
13、C.【点睛】本题考查了二次函数的对称性,解题的关键是求出其对称轴.11、A【解析】试题分析:用一个4倍放大镜照ABC,放大后与原三角形相似且相似比为1:4,相似三角形对应角相等,对应边的比等于相似比、对应周长的比等于相似比,面积比等于相似比的平方,故A选项错误故选A考点:相似三角形的性质12、B【分析】解法一:将变形为,代入数据即可得出答案.解法二:设,带入式子约分即可得出答案.【详解】解法一:解法二:设,则故选B.【点睛】本题考查比例的性质,将比例式变形,或者设比例参数是解题的关键.二、填空题(每题4分,共24分)13、58【分析】根据已知条件可证明ADEABC,利用相似三角形的性质即可得B
14、的度数【详解】AD:DBAE:EC,AD:ABAE:AC,A=A,ADEABC,ADE=ABC,ADE58,B58,故答案为:58【点睛】本题考查了相似三角形的判定和性质,从相似求两个三角形的相似比到对应角相等14、1【分析】由,得a3b,进而即可求解【详解】,a3b,;故答案为:1【点睛】本题主要考查比例式的性质,掌握比例式的内项之积等于外项之积,是解题的关键15、【分析】过D作DMAB,根据计算即得【详解】过D作DMAB,如下图:为的中点,以点为圆心,长为半径作弧,交于点AD=ED=CD,在中, , 故答案为:【点睛】本题考查了求解不规则图形的面积,解题关键是通过容斥原理将不规则图形转化为
15、规则图形16、-1【分析】设出点P的坐标,阴影部分面积等于点P的横纵坐标的积的绝对值,把相关数值代入即可【详解】解:设点P的坐标为(x,y)P(x,y)在反比例函数y的图象上,kxy,|xy|1,点P在第二象限,k1故答案是:1【点睛】此题考查的是已知反比例函数与矩形的面积关系,掌握反比例函数图象上一点作x轴、y轴的垂线与坐标轴围成的矩形的面积与反比例函数的比例系数的关系是解决此题的关键17、【分析】钟表的分针经过40分钟转过的角度是,即圆心角是,半径是,弧长公式是,代入就可以求出弧长【详解】解:圆心角的度数是:,弧长是【点睛】本题考查了求弧长,正确记忆弧长公式,掌握钟面角是解题的关键18、1
16、【分析】根据众数的定义直接解答即可【详解】解:数据1、1、3、1、4中,数字1出现了两次,出现次数最多,1是众数,故答案为:1【点睛】此题考查了众数,掌握众数的定义是解题的关键,众数是一组数据中出现次数最多的数三、解答题(共78分)19、 (1)见解析;(2) 【分析】(1)作线段的垂直平分线,两线交于点,以为圆心,为半径作,即为所求(2)在中,利用勾股定理求出即可解决问题【详解】解:(1)如图即为所求 (2)设线段的垂直平分线交于点由题意,在中,故答案为【点睛】本题考查作图-复杂作图,等腰三角形的性质,三角形的外接圆与外心等知识,解题的关键是熟练掌握基本知识,属于中考常考题型20、(1)证明
17、见解析;(2)【分析】(1)连接OC,由OAOC可以得到OACOCA,然后利用角平分线的性质可以证明DACOCA,接着利用平行线的判定即可得到OCAD,然后就得到OCCD,由此即可证明直线CD与O相切于C点;(2)连接BC,BAC30,在RtABC中可求得AC,同理在RtACD中求得CD【详解】(1)证明:连接CO,AOCO,OACOCA,AC平分DAB,OACDAC,DACOCA,COAD,COCD,DC为O的切线; (2)解:连接BC,AB为O的直径,ACB90,DAB60,AC平分DAB,BACDAB30,O的半径为3,AB6,ACAB3 CAD30【点睛】此题主要考查了切线的性质与判定
18、,解题时首先利用切线的判定证明切线,然后利用含特殊角度的直角三角形求得边长即可解决问题21、(1)证明见解析;(2)证明见解析;(3)tanACD2【分析】(1)根据BM为切线,BC平分ABM,求得ABC的度数,再由直径所对的圆周角为直角,即可求证;(2)根据三角形相似的判定定理证明三角形相似,再由相似三角形对应边成比例,即可求证;(3)由图得到ACDABD,根据各个角之间的关系求出AFD的度数,用AD表达出其它边的边长,再代入正切公式即可求得.【详解】(1)BM是以AB为直径的O的切线,ABM90,BC平分ABM,ABCABM45AB是直径ACB90,CABCBA45ACBCACB是等腰直角
19、三角形;(2)如图,连接OD,OCDEEO,DOCOEDOEOD,EDOOCDEDOEDO,EODOCDEDOODCOD2DEDCOA2DEDCEODC(3)如图,连接BD,AD,DO,作BAFDBA,交BD于点F,DOBOODBOBD,AOD2ODBEDO,CABCDB45EDO+ODB3ODB,ODB15OBDBAFDBA15AFBF,AFD30AB是直径ADB90AF2AD,DFADBDDF+BFAD+2ADtanACDtanABD2【点睛】本题考查圆的切线、角平分线的性质,相似三角形的性质以及三角函数中正切的计算问题,属综合中档题.22、(1),;(2);(3);(4)St2+3t,S
20、的最大值为【分析】(1)作PHAB于H,根据勾股定理求出AB,证明BHPBCA,根据相似三角形的性质列出比例式,求出PH,根据三角形的面积公式求出S;(2)根据BQPBCA,得到,代入计算求出t即可;(3)过Q作QGBC于G,证明QBGABC,根据相似三角形的性质列式计算,得到答案;(4)根据QBGABC,用t表示出QG,根据三角形的面积公式列出二次函数关系式,根据二次函数的性质计算即可【详解】解:在RtABC中,AC6cm,BC8cm,由勾股定理得,AB10cm,0t5,经过ts时,BPt,AQ2t,则BQ102t,(1)如图1,作PHAB于H,当t2时,BP2,BQ102t6,BHPBCA
21、90,BB,BHPBCA,即,解得:PH,S6,故答案为:;(2)当PQAB时,BQPBCA90,BB,BQPBCA,即,解得,t,则当t时,PQAB;(3)如图2,过Q作QGBC于G,QBQP,QGBC,BGGPt,BGQC90,BB,QBGABC,即,解得,t,当t时,BPQ是以BP为底边的等腰三角形;(4)由(3)可知,QBGABC,即,解得,QGt+6,St(t+6),t2+3t,(t)2+,则当t时,S的值最大,最大值为【点睛】本题考查的是相似三角形的判定和性质、二次函数的应用以及三角形的面积计算,掌握相似三角形的判定定理和性质定理、二次函数的性质是解题的关键23、(1)方程有一个负实根,一个正实根;详见解析;(2)【分析】(1)根据函数的图象与性质即可得;(2)先求出方程的根的判别式,再利用即可得出答案.【详解】(1)由函数的图象与性质得:函数图象与x的负半轴和正半轴各有一个交点,则方程有一个负实根,一个正实根;函数图象与x轴的两个交点均在x轴的正半轴上,画图如下所示:;由可得:;(2)方程的根的判别式为,则此方程有两个不相等的实数根由题意,可利用得:,解得则方程组的解为故k的取值范围是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 服务协议解除:2024年详细条款
- 2024年度商业标牌供应及维护协议
- 房产行纪销售协议(2024年)
- 二手车交易协议模板2024年
- 瓷砖销售及服务协议样本2024适用
- 2024年度三方股权转让协议
- 型空调设备租赁协议2024年
- 2024年适用挡土墙工程承包规范协议
- 房产证代办服务协议模板2024
- 2024年高炉制造行业协议
- 《强化学习简介》课件
- 2024年护士职业心理健康关注护士心理健康问题和应对方法
- 招标代理应急响应预案
- 国开2023秋《人文英语4》期末复习写作练习参考答案
- 四级高频词汇
- 央国企信创化与数字化转型规划实施
- 1.四方埔社区服务中心场地管理制度
- 智慧城市治理CIM平台建设方案
- 心肺复苏后疾病的病理生理和预后
- 《餐饮服务的特点》课件
- 广州市社会保险工伤待遇申请表
评论
0/150
提交评论