湖南长沙长郡教肓集团2022年九年级数学第一学期期末质量跟踪监视试题含解析_第1页
湖南长沙长郡教肓集团2022年九年级数学第一学期期末质量跟踪监视试题含解析_第2页
湖南长沙长郡教肓集团2022年九年级数学第一学期期末质量跟踪监视试题含解析_第3页
湖南长沙长郡教肓集团2022年九年级数学第一学期期末质量跟踪监视试题含解析_第4页
湖南长沙长郡教肓集团2022年九年级数学第一学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷

2、和答题卡一并交回。一、选择题(每题4分,共48分)1把抛物线先向左平移1个单位,再向上平移个单位后,得抛物线,则的值是( )A-2B2C8D142若关于x的一元二次方程(a1)x2xa210的一个解是x0,则a的值为()A1B1C1D03如图,O是ABC的外接圆,连接OA、OB,C40,则OAB的度数为()A30B40C50D804已知ABCABC,且相似比为1:1则ABC与ABC的周长比为()A1:1B1:6C1:9D1:5下列各点中,在函数y=图象上的是( )A(2,4)B(2,4)C(2,4)D(8,1)6下列命题是真命题的是()A如果a+b0,那么ab0B的平方根是4C有公共顶点的两个

3、角是对顶角D等腰三角形两底角相等7若关于x的分式方程有增根,则m为( )A-1B1C2D-1或28在中,若,则的长为( )ABCD9如图,过反比例函数(x0)的图象上任意两点A、B分别作x轴的垂线,垂足分别为C、D,连接OA、OB,设AOC和BOD的面积分别是S1、S2,比较它们的大小,可得( )AS1S2BS1S2CS1S2D大小关系不能确定10如图,中,将绕点逆时针旋转后得到,点经过的路径为则图中涂色部分的面积为( )ABCD11如图,在某监测点B处望见一艘正在作业的渔船在南偏西15方向的A处,若渔船沿北偏西75方向以40海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏

4、东60方向上,则B、C之间的距离为( ).A20海里B10海里C20海里D30海里12下列关系式中,是反比例函数的是( )ABCD二、填空题(每题4分,共24分)13在某一时刻,测得一根高为的竹竿的影长为,同时同地测得一栋楼的影长为,则这栋楼的高度为_14已知关于x的一元二次方程(m1)x2+x+1=0有实数根,则m的取值范围是 15已知ABC DEF,其中顶点A、B、C分别对应顶点D、E、F,如果A=40,E=60,那么C=_度.16如图,矩形ABCD绕点A旋转90,得矩形,若三点在同一直线上,则的值为_17已知在中,那么_.18在1、0、1、中任取一个数,取到无理数的概率是_三、解答题(共

5、78分)19(8分)观察下列各式:11+,(1)猜想: (写成和的形式)(2)你发现的规律是: ;(n为正整数)(3)用规律计算:(1)+()+()+()+()20(8分)(1)(学习心得)于彤同学在学习完“圆”这一章内容后,感觉到一些几何问题如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在中,,是外一点,且,求的度数.若以点为圆心,为半径作辅助,则、必在上,是的圆心角,而是圆周角,从而可容易得到=_.(2)(问题解决)如图2,在四边形中,,求的度数.(3)(问题拓展)如图3,是正方形的边上两个动点,满足.连接交于点,连接交于点,连接交于点,若正方形的边长为2,则线段

6、长度的最小值是_.21(8分)如图,AB是O的直径,AC是O的弦,BAC的平分线交O于点D,过点D作DEAC交AC的延长线于点E,连接BD(1)求证:DE是O的切线;(2)若BD3,AD4,则DE 22(10分)如图,在矩形ABCD中,BC60cm动点P以6cm/s的速度在矩形ABCD的边上沿AD的方向匀速运动,动点Q在矩形ABCD的边上沿ABC的方向匀速运动P、Q两点同时出发,当点P到达终点D时,点Q立即停止运动设运动的时间为t(s),PDQ的面积为S(cm2),S与t的函数图象如图所示(1)AB cm,点Q的运动速度为 cm/s;(2)在点P、Q出发的同时,点O也从CD的中点出发,以4cm

7、/s的速度沿CD的垂直平分线向左匀速运动,以点O为圆心的O始终与边AD、BC相切,当点P到达终点D时,运动同时停止当点O在QD上时,求t的值;当PQ与O有公共点时,求t的取值范围23(10分)如图,已知抛物线(a0)经过A(1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P的坐标;(3)点M也是直线l上的动点,且MAC为等腰三角形,请直接写出所有符合条件的点M的坐标24(10分)如图,在边长为个单位长度的小正方形组成的网格中,给出了ABC格点(顶点是网格线的交点).请在网格中画

8、出ABC以A为位似中心放大到原来的倍的格点AB1C1,并写出ABC与AB1C1,的面积比(ABC与AB1C1,在点A的同一侧)25(12分)如果某人滑雪时沿着一斜坡下滑了130米的同时,在铅垂方向上下降了50米,那么该斜坡的坡度是1_26在下列网格图中,每个小正方形的边长均为个单位中, , 且三点均在格点上(1)画出绕顺时针方向旋转后的图形;(2)求点运动路径的长(结果保留) 参考答案一、选择题(每题4分,共48分)1、B【分析】将改写成顶点式,然后按照题意将进行平移,写出其平移后的解析式,从而求解【详解】解:由题意可知抛物线先向左平移1个单位,再向上平移个单位n=2故选:B【点睛】本题考查了

9、二次函数图象与几何变换,利用顶点坐标的变化确定函数图象的变化可以使求解更加简便2、A【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于a的方程,从而求得a的值,且(a1)x2xa210为一元二次方程,即【详解】把x=0代入方程得到:a210解得:a=1(a1)x2xa210为一元二次方程即综上所述a=1.故选A【点睛】此题考查一元二次方程的解,解题关键在于掌握一元二次方程的求解方法.3、C【分析】直接利用圆周角定理得出AOB的度数,再利用等腰三角形的性质得出答案.【详解】解:ACB40,AOB80,AOBO,OABOBA(18080)50故选:C【点睛

10、】本题主要考查了三角形的外接圆与外心,圆周角定理. 正确得出AOB的度数是解题关键.4、A【解析】根据相似三角形的周长比等于相似比即可得出答案【详解】ABCABC,且相似比为1:1,ABC与ABC的周长比为1:1,故选:A【点睛】本题考查相似三角形的性质,解题的关键是熟练掌握基本知识,属于基础题型5、A【分析】所有在反比例函数上的点的横纵坐标的积应等于比例系数本题只需把所给点的横纵坐标相乘,结果是8的,就在此函数图象上【详解】解:-24=-8故选:A【点睛】本题考查反比例函数图象上点的坐标特征,掌握反比例函数性质是本题的解题关键6、D【详解】解:A、如果a+b=0,那么a=b=0,或a=b,错

11、误,为假命题;B、=4的平方根是2,错误,为假命题;C、有公共顶点且相等的两个角是对顶角,错误,为假命题;D、等腰三角形两底角相等,正确,为真命题;故选D7、A【分析】增根就是分母为零的x值,所以对分式方程去分母,得m=x-3,将增根x=2代入即可解得m值【详解】对分式方程去分母,得:1=m+2-x,m=x-3,方程有增根,x-2=0,解得:x=2,将x=2代入m=x-3中,得:m=2-3=1,故选:A【点睛】本题考查分式方程的解,解答的关键是理解分式方程有增根的原因8、A【解析】根据解直角三角形的三角函数解答即可【详解】如图,cos53= ,AB= 故选A【点睛】此题考查解直角三角形的三角函

12、数解,难度不大9、B【分析】根据反比例函数的几何意义,直接求出S1、S1的值即可进行比较【详解】由于A、B均在反比例函数的图象上,且ACx轴,BDx轴,则S1;S1故S1S1故选:B【点睛】此题考查了反比例函数k的几何意义,找到相关三角形,求出k的绝对值的一半即为三角形的面积10、A【分析】先根据勾股定理得到AB,再根据扇形的面积公式计算出,由旋转的性质得到RtADERtACB,于是【详解】ACB=90,AC=BC=1,又RtABC绕A点逆时针旋转30后得到RtADE,RtADERtACB,故选:A【点睛】本题主要考查的是旋转的性质、扇形的面积公式,勾股定理的应用,将阴影部分的面积转化为扇形A

13、BD的面积是解题的关键11、C【分析】如图,根据题意易求ABC是等腰直角三角形,通过解该直角三角形来求BC的长度【详解】如图,ABE=15,DAB=ABE,DAB=15,CAB=CAD+DAB=90又FCB=60,CBE=FCB=60,CBA+ABE=CBE,CBA=45在直角ABC中,sinABC=,BC=20海里故选C考点:解直角三角形的应用-方向角问题12、B【解析】根据反比例函数、一次函数、二次函数的定义可得答案【详解】解:y=2x-1是一次函数,故A错误;是反比例函数,故B正确;y=x2是二次函数,故C错误;是一次函数,故D错误;故选:B【点睛】此题考查反比例函数、一次函数、二次函数

14、的定义,解题关键在于理解和掌握反比例函数、一次函数、二次函数的意义二、填空题(每题4分,共24分)13、1【分析】根据同一时刻物高与影长成正比即可得出结论【详解】解:设这栋楼的高度为hm,在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一栋楼的影长为60m,解得h=1(m)故答案为1【点睛】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键14、m且m1【详解】本题考查的是一元二次方程根与系数的关系有实数根则=即1-4(-1)(m-1)0解得m,又一元二次方程所以m-10综上m且m1.15、80【解析】因为ABC DEF,所以A=D, B=E, C=F,因为

15、A=40,E=60,所以B=60,所以C=1804060=80,故答案为: 80.16、【分析】连接,根据旋转的性质得到,根据相似三角形的性质得,即,即可得到结论【详解】解:连接,矩形ABCD绕点A旋转90,得矩形,=BC=AD,三点在同一直线上, 即解得或(舍去)所以故答案为:【点睛】本题考查旋转的性质,相似三角形的判定和性质,矩形的性质,正确的识别图形是解题的关键17、1【分析】根据三角函数的定义即可求解【详解】cotB=,AC= =3BC=1故答案是:1【点睛】此题考查锐角三角函数的定义及运用,解题关键在于掌握在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边,余

16、切为邻边比对边18、【详解】解:根据无理数的意义可知无理数有:,因此取到无理数的概率为故答案为:考点:概率三、解答题(共78分)19、(1);(2);(3)【分析】(1)根据所给式子进行求解即可;(2)根据已知式子可得到;(3)分别算出括号里的式子然后相加即可;【详解】解:(1)由所给的已知发现乘积的等于和,故答案为;(2),故答案为;(3) ,【点睛】本题主要考查了找规律数字运算,准确计算是解题的关键20、(1)45;(2)25;(3)【解析】(1)利用同弦所对的圆周角是所对圆心角的一半求解(2)由A、B、C、D共圆,得出BDCBAC,(3)根据正方形的性质可得ABADCD,BADCDA,A

17、DGCDG,然后利用“边角边”证明ABE和DCF全等,根据全等三角形对应角相等可得12,利用“SAS”证明ADG和CDG全等,根据全等三角形对应角相等可得23,从而得到13,然后求出AHB90,取AB的中点O,连接OH、OD,根据直角三角形斜边上的中线等于斜边的一半可得OHAB1,利用勾股定理列式求出OD,然后根据三角形的三边关系可知当O、D、H三点共线时,DH的长度最小【详解】(1)如图1,ABAC,ADAC,以点A为圆心,点B、C、D必在A上,BAC是A的圆心角,而BDC是圆周角,BDCBAC45,故答案是:45;(2)如图2,取BD的中点O,连接AO、COBADBCD90,点A、B、C、

18、D共圆,BDCBAC,BDC25,BAC25;(3)在正方形ABCD中,ABADCD,BADCDA,ADGCDG,在ABE和DCF中,ABEDCF(SAS),12,在ADG和CDG中,ADGCDG(SAS),23,13,BAH3BAD90,1BAH90,AHB1809090,取AB的中点O,连接OH、OD,则OHAOAB1,在RtAOD中,OD,根据三角形的三边关系,OHDHOD,当O、D、H三点共线时,DH的长度最小,最小值ODOH1【点睛】本题主要考查了圆的综合题,需要掌握垂径定理、圆周角定理、等腰直角三角形的性质以及勾股定理等知识,难度偏大,解题时,注意辅助线的作法21、(1)见解析;(

19、2)【分析】(1)连接OD,如图,先证明ODAE,再利用DEAE得到ODDE,然后根据切线的判定定理得到结论;(2)证明ABDADE,通过线段比例关系求出DE的长.【详解】(1)证明:连接ODAD平分BACBADDACOAODBADODAODADACODAE ODEE180 DEAEE90ODE180E1809090,即ODDE点D在O上DE是O的切线.(2)AB是O的直径,ADB=90,AD平分BAC,BAD=DAE,在ABD和ADE中,ABDADE,,BD3,AD4,AB=5DE=.【点睛】本题考查了切线的判定定理,相似三角形的判定和性质,适当画出正确的辅助线是解题的关键.22、(1)30

20、,6;(2);t【分析】(1)设点Q的运动速度为a,则由图可看出,当运动时间为5s时,PDQ有最大面积450,即此时点Q到达点B处,可列出关于a的方程,即可求出点Q的速度,进一步求出AB的长;(2)如图1,设AB,CD的中点分别为E,F,当点O在QD上时,用含t的代数式分别表示出OF,QC的长,由OFQC可求出t的值;设AB,CD的中点分别为E,F,O与AD,BC的切点分别为N,G,过点Q作QHAD于H,如图21,当O第一次与PQ相切于点M时,证QHP是等腰直角三角形,分别用含t的代数式表示CG,QM,PM,再表示出QP,由QPQH可求出t的值;同理,如图22,当O第二次与PQ相切于点M时,可

21、求出t的值,即可写出t的取值范围【详解】(1)设点Q的运动速度为a,则由图可看出,当运动时间为5s时,PDQ有最大面积450,即此时点Q到达点B处,AP6t,SPDQ(6065)5a450,a6,AB5a30,故答案为:30,6;(2)如图1,设AB,CD的中点分别为E,F,当点O在QD上时,QCAB+BC6t906t,OF4t,OFQC且点F是DC的中点,OFQC,即4t (906t),解得,t;设AB,CD的中点分别为E,F,O与AD,BC的切点分别为N,G,过点Q作QHAD于H,如图21,当O第一次与PQ相切于点M时,AH+AP6t,AB+BQ6t,且BQAH,HPQHAB30,QHP是

22、等腰直角三角形,CGDNOF4t,QMQG904t6t9010t,PMPN604t6t6010t,QPQM+MP15020t,QPQH,15020t30,t;如图22,当O第二次与PQ相切于点M时,AH+AP6t,AB+BQ6t,且BQAH,HPQHAB30,QHP是等腰直角三角形,CGDNOF4t,QMQG4t(906t)10t90,PMPN4t(606t)10t60,QPQM+MP20t150,QPQH,20t15030,t,综上所述,当PQ与O有公共点时,t的取值范围为:t【点睛】本题考查了圆和一元一次方程的综合问题,掌握圆切线的性质、解一元一次方程的方法、等腰直角三角形的性质是解题的关键23、(1);(2)P(1,0);(3)M(1,)(1,)(1,1)(1,0)【分析】(1)直接将A、B、C三点坐标代入抛物线的解析式中求出待定系数即可;(2)由图知:AB点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知,直线l与x轴的交点,即为符合条件的P点;(3)由于MAC的腰和底没有明确,因此要分三种情况来讨论:MA=AC、MA=MC、AC=MC;可先设出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论