六下第2单元框架教案_第1页
六下第2单元框架教案_第2页
六下第2单元框架教案_第3页
六下第2单元框架教案_第4页
六下第2单元框架教案_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、课题:圆柱的熟识,圆柱的特点、底面、侧面、高以及侧面绽开图与圆柱的关系等 教材与学情分析:所用课时:1 总课时: 6 教材第一出现了现实生活中具有圆柱特点的建筑物和生活用品的图片,让 同学观看,并提出问题“ 这些物体的外形有什么共同特点?” 引导同学摸索;其次,从实物中抽象出圆柱的立体图形,给出图形的名称,使同学对圆柱的认 识经受由抽象表象抽象的过程;最终,让同学说说生活中仍见过哪些 圆柱形物体,丰富同学头脑中圆柱形象的储备;同时让同学感受生活中圆柱的 运用是特别广泛的;A 类:熟识圆柱,把握圆柱的特点,知道圆柱的各部分名称;学 习 B 类:熟识圆柱的底面,侧面和高,明白圆柱的侧面绽开图特点;

2、目 C 类:培育同学的观看才能,操作才能和判定才能;标教学重点 把握圆柱的特点,知道圆柱的各部分名称;教学难点 熟识圆柱的底面,侧面和高,明白圆柱的侧面绽开图特点;课 1.懂得把握圆柱的特点 前 2.弄清圆柱侧面是一个长方形,长方形的长和宽与圆柱底面周长和高的关 预 系;习第一板块2 分钟教学板块同学学习行为预设1、我们学过了哪些立体图形?2、现在我们再来争论一种立体图形圆柱 老师板书:圆柱熟识其次板块 B/C 类 18 分钟回忆旧知,口头回答1、指导同学看课本的画面,摸索:这些物体的外形有什 么共同特点?2、你仍见过哪些圆柱形的物体?3、观看圆柱,弄清各部分名称;(1)什么叫圆柱的底面?(2

3、)什么叫圆柱的侧面?(3)什么叫圆柱的高?4、利用实物指出底面,侧面和高1.通过操作, 使同学 熟识到:圆柱的表面由上下两个底面和5、圆柱的特点:侧面组成;(1)圆柱的底面都是圆,并且大小一样;(2)圆柱的侧面是一个曲面;6、操作试验(1)圆柱侧面剪开,绽开显现长方形;(2)将长方形围起来,形成原先的圆柱形;2.同学 观看很简洁 看到这个长方形的(3)想一想:长方形的长、宽与圆柱的什么有关?有什 面积等于圆柱的侧么关系?面积第三板块 巩固练习 B18 分钟1.做第 11、12 页“做一做 集体沟通,订正2. 完成练习二的 14 题第四板块 教学小结 2 分钟这节课我们学习了什么?通过这节课的学

4、习你有什么收获?第五板块 作业设计板书设计圆柱的熟识底面(两个大小完全相同的圆)圆柱高 有很多条长 = 圆柱的底面周长侧面 沿着一条高绽开长方形宽 = 圆柱的高教学反思:课题:圆柱的表面积课时: 1 总课时: 7 教材与学情分析:教材留意拓宽同学的探究空间, 加强对圆形运算方法的探究, 加强在操作 中对问题的摸索; 对圆柱表面积的教学, 教材一开头就提出问题: 圆柱的侧面绽开后是什么外形?让同学动手操作,剪一剪绽开观看, 再进一步探究; 长方形的长、宽与什么有关?有什么关系?长方形的长与圆柱底面的周长的关系,宽与圆柱的高的关系是同学在自主操作、观看与探究过程中猎取的; 在此基础上教材又提出进一

5、步探究的问题:圆柱的表面积怎样运算呢?使同学探究得 出:圆柱的表面积 =圆柱的侧面积 +两个底面的面积,圆柱的侧面积 =底面周长高;A 类:使同学懂得圆柱体侧面积和表面积的含义;学 习 目 标教学重点教学难点课 前B 类:把握运算方法,并能正确地运算圆柱的侧面积和表面积;C 类:在数学学习活动中获得胜利的体验,建立自信心懂得圆柱体侧面积和表面积的含义;把握运算方法,并能正确地运算圆柱的侧面积和表面积;1、剪一剪,看一看圆柱的侧面绽开后是什么图形?2、你认为圆柱的表面积怎么运算?预 习第一板块A 类 3 分钟教学板块同学学习行为预设1指名同学说出圆柱的特点2口头回答下面问题回忆旧知,口头回(1)

6、长方体的表面积指的是什么?答(2)长方形的面积怎样运算?其次板块 B/C 类 15 分钟 1揭示课题;今日,我们一起来学习圆柱的表面积的运算;(板书 课题:圆柱的表面积)2、教学例 3;懂得圆柱表面积的含义(1)让同学把自己制作的圆柱模型绽开,观看一下,圆柱的表面由哪几个部分组成?(2)圆柱的表面积是指圆柱表面的面积,也就是圆 1.通过操作,使学柱的侧面积加上两个底面的面积;生熟识到:圆柱的板书:圆柱的表面积圆柱的侧面积底面积2 表面由上下两个底(3)圆柱的底面积你会运算吗?侧面积呢?面和侧面组成;圆柱的侧面积,顾名思义,也就是圆柱侧面的面积;出示圆柱的绽开图: 这个绽开后的长方形的面积和圆柱

7、 的侧面积有什么关系呢?那么,圆柱的侧面积应当怎样运算呢? (引导同学 2.同学观看很简洁 依据绽开后的长方形的长和宽与圆柱底面周长和高的关 看到这个长方形的系,可以知道:圆柱的侧面积底面周长 高)面积等于圆柱的侧3尝试练习;面积(1)求下面个圆柱的侧面积;底面周长 2.5dm,高 0.6dm;底面直径 8cm,高 12cm;(2)求下面个圆柱的表面积;底面积是 40c ,侧面积是 25 c ;底面半径是 2dm,高是 5dm;第三板块巩固练习 B/C 20 分钟集体沟通,订正完成练习二的 58 题第四板块教学小结 2 分钟这节课我们学习了什么?通过这节课的学习你有什么收 获?第五板块 作业设

8、计板书设计 圆柱的表面积 圆柱的表面积圆柱的侧面积底面积2 长方形的面积 = 长宽圆柱的侧面积 =底面周长高 教学反思:课题:圆柱的表面积课时: 1 总课时: 8 教材与学情分析:教材留意拓宽同学的探究空间, 加强对圆形运算方法的探究, 加强在操作 中对问题的摸索; 对圆柱表面积的教学, 教材一开头就提出问题: 圆柱的侧面绽开后是什么外形?让同学动手操作,剪一剪绽开观看, 再进一步探究; 长方形的长、宽与什么有关?有什么关系?长方形的长与圆柱底面的周长的关系,宽与圆柱的高的关系是同学在自主操作、观看与探究过程中猎取的; 在此基础上教材又提出进一步探究的问题:圆柱的表面积怎样运算呢?使同学探究得

9、出:圆柱的表面积 =圆柱的侧面积 +两个底面的面积,圆柱的侧面积 =底面周长高;A 类:使同学娴熟把握圆柱表面积、侧面积的运算方法;学 习 目 标教学重点教学难点课 前B 类:能依据圆柱表面积的运算方法解决有关实际问题;C类:形成解决问题的一些基本策略, 进展应用意识,进展实践才能;娴熟把握圆柱表面积、侧面积的运算方法;能依据圆柱表面积的运算方法解决有关实际问题;1. 剪一剪,看一看圆柱的侧面绽开后是什么图形?2. 你认为圆柱的表面积怎么运算?预习第一板块A/C 类 8教学板块同学学习行为预设分钟1一个圆柱高 20 厘米,底面直径 12 厘米;(1)圆柱的底面积是多少?回忆圆柱表面积的(2)圆

10、柱的侧面积是多少?运算方法(3)圆柱的表面积是多少?2运算下面个圆柱的表面积;10cm 1.5m 同学依据要求完成8cm 0.8m 圆柱表面积的运算其次板块 B1/B2 类 10 分钟1教学例 4 (1)出示例 4;1. 同学读题,明确(2)求的是厨师帽所用的材料,需要留意些什么?已知条件(已知圆(3)指定两名同学板演,其他同学独立进行运算;柱 的 高 和 底 面 直 老师行间巡察,留意观看最终的得数是否运算正确;(做 径,求表面积)完后,集体订正; 指名同学回答自己在运算时, 最终的得 2. 厨师帽没有下底 数是怎样取得的; 由此指出:这道题使用的材料要比运算 面,说明它只有一 得到的结果多

11、一些;因此这里不能用四舍五入法取近似 个底面 值;这道题要保留整十平方厘米,省略的十位上即使是 4 3. 两名同学板演,或比 4 小,都要向前一位进 1;这种取近值的方法叫做进 其他同学独立进行 一法;)运算 帽子侧面积: 3.14 20 281758.4 (平方厘米)冒顶的面积: 3.14 (20 2)2314(平方厘米)需要用面料: 1758.4 3142072.4 2080(平方厘米)2小结:在实际应用中运算圆柱形物体的表面积,要依据实际情形 运算各部分的面积;如运算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积; 油桶用铁皮是侧面 积加上两个底面积,求用料多少,一般采纳进一

12、法取值,以保证原材料够用;第三板块巩固练习 B/C 17分钟1. 尝试练习 一种圆柱形流水管,每节长度为 1.2m,横截面直径 说说对题的懂得及 为 0.5m,制作 20 节这样的流水管,至少需要铁皮多少平 解题思路 , 列式计 方米?(得数保留整数)算 2完成课本中的做一做;第四板块 教学小结 3 分钟 这节课我们学习了什么?通过这节课的学习你有什么收 获?第五板块 作业设计板书设计 运用圆柱表面积学问解决有关实际问题例 4 一顶厨师帽,高28 厘米,帽顶直径20 厘米,做这样一顶帽子至少需要用多少面料? (得数保留整十平方厘米)帽子侧面积: 3.14 20 281758.4 (平方厘米)冒

13、顶的面积: 3.14 (20 2)2314(平方厘米)需要用面料: 1758.4 3142072.4 2080(平方厘米)教学反思:课题:圆柱的体积课时: 1 总课时: 9 教材与学情分析:教材第一从回忆旧知(长方体、正方体的体积运算)入手,引出圆柱体积的 运算问题,并提出圆柱能否转化成已学过的立体图形来运算体积;接着通过教具 演示图说明把圆柱的底面分成如干个相等的扇形,把圆柱切开,拼成一个近似的 长方体,然后引导观看和推理;A 类:经受圆柱体积运算公式的推导过程,懂得并把握圆柱体积的运算学 习 目 标教学重点教学难点方法,并能正确运算圆柱的体积;B 类:能运用圆柱体积运算方法,解决有关的实际

14、问题;C 类:引导同学逐步学会转化的数学思想和数学方法,培育同学解决实 际问题的才能;懂得并把握圆柱体积的运算方法,并能正确运算圆柱的体积;圆柱体积运算公式的推导过程,能运用圆柱体积运算方法,解决有关的实际问题;课(1)什么叫体积?长方体体积怎样求?同学学习行为预设前(2)圆的面积公式是什么?预 习(3)圆的面积公式是怎样推导的?教学板块第一板块C类 5分钟1、提问:(1)什么叫体积?长方体体积怎样求?(2)圆的面积公式是什么?(3)圆的面积公式是怎样推导的?回忆旧知,引导迁移2、导入:我们能不能把圆柱体转化成学过的立体图形来计 算它的体积呢?其次板块A/B/C 类 15 分钟1. 先让同学回

15、忆,同 桌的相互说说;然后 指 名 学 生 说一 说 圆 面 积 计 算 公式 的 推 导过程:2. 让同学相互争论,思 考 应 怎 样进 行 转 化;1. 请大家想一想,在学习圆的面积时,我们是怎样把因变成已学过的图形再运算面积的. 2. 怎样运算圆柱的体积呢 .大家认真想想看, 能不能把圆柱转化成我们已经学过的图形来求出它的体积. 3. 这节课我们就来争论如何将圆柱转化成我们已经学过的 图形来求出它的体积; (板书课题:圆柱体的体积)4圆柱体积运算公式的推导; (教学例 5)(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积;(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小

16、相等的 体的立体图形)16 块,把它们拼成一个近似长方(2)由于我们分的不够细,所以看起来仍不太像长方 体;假如分成的扇形越多,拼成的立体图形就越接近于长 方体了;(3)通过观看,归纳公式;拼成的长方体的体积与圆柱的体积有什么关系?长方体的底面积与高与圆柱的底面积、高有什么关 系?长方体的体积等于什么?圆柱呢?长方体的体积 = 底面积 高3. 同学通过争论、交圆柱体的体积 = 底面积 高流 , 归 纳 出计 算 公 式,老师板书;假如用 V 表示圆柱的体积, S 表示底面积,h 表示高,那么圆柱的体积公式该怎样表示?(板书:V=Sh)第三板块 巩固练习 A/B 15 分钟1. 教材第 20 页

17、的做一做1 题;学 生 练 习 ,集 中 评讲,全班订正2.巩固练习:完成课本练习三第第四板块教学小结 3 分钟本节课你学到了什么学问?运算圆柱体积需要哪几个条件?第五板块 作业设计板书设计圆柱的体积长方体的体积= 底面积 高圆柱体的体积= 底面积 高V = S h教学反思:课题:已知底面半径和高,求圆柱的体积课时: 1 总课时: 10 教材与学情分析:供应丰富的素材,让同学感受数学与现实生活的联系,能运用所学学问解 决简洁实际问题;A 类:同学能敏捷运用圆柱体积的运算公式;学 习 B 类:,娴熟利用圆柱的高和半径、直径或周长,运算圆柱的体积,并目 能解决有关的实际问题标 C类:培育应用意识教

18、学板块 同学学习行为预设 第一板块 A/B 类 5 分钟1说一说圆柱体积运算公式,并描述公式的推导过 说一说,算一算 程;2运算以下各圆柱的体积;(1)底面积是 1.2 ,高 5m;(2)底面积是 48cm 2,高 20cm (3)底面积是 25dm 2,高 0.2dm 其次板块 B/C 类 8 分钟1. 想一想:假如已知圆柱底面半径 r 和高 h,能不能运算圆柱的体积?体积公式仍可以怎样表示?1. 同学回答,老师板2. 教学例 6. 书: V=r2.h (1)出示例 6,并让同学摸索:要知道杯子能不能 装下这袋牛奶,得先知道什么?(应先知道杯子的容积)(2)同学尝试完成例 6; 杯子的底面积

19、:3.14 ( 8 2)23.14 4 23.14 16 50.24(cm2) 杯子的容积:5024 10 502.4(cm3)502.4(ml)答:502.4 大于 498,所以这个杯子能装下这袋奶;3尝试练习;(1)假如知道圆柱的底面周长和高,你能运算圆柱2.学 生 讨 论 解 题 的 思路,独立完成, 全班订正的体积吗?(2)练一练;一个圆柱形柱子,底面周长是这个柱子的体积是多少?第三板块巩固练习B25 分钟完成练习三的 611 题1、第 6 题(1)同学独立运算(2)说一说2、第 7 题(1)同学独立列式运算(2)说说解题步骤25.12dm,高 30dm,3、第 8 题(1)认真读题,

20、弄清题意,说说已知条件和问题(2)列算式,并运算集体订正4、第 911 题独立完成 第四板块 教学小结 2 分钟 这节课我们学习了什么?通过这节课的学习你有什 么收成?运算圆柱的体积需要几个条件?哪一个条件是不变的,哪一个条件是可以变化的?板书设计 圆柱的体积 例 6 杯子的底面积: 杯子的容积:3.14 (8 2)2 5024 10 3.14 42 502.4(cm3)3.14 16 502.4(ml)50.24(cm2)答:502.4 大于 498,所以这 个杯子能装下这袋奶;教学反思:课题:圆柱的体积练习课课时: 1 总课时: 11 教材与学情分析:数学教学活动必需建立在同学的认知水平和

21、已有的学问体会基础之上;激发同学的学习积极性,向同学供应从事数学活动的机会,让他们在自主探 索和合作沟通中真正懂得和把握基本的数学学问与技能、数学思想和方法,获得广泛的数学活动体会;A 类:使同学能够运用公式正确地运算圆柱的体积和容积;学 习 B 类:初步学会用转化的数学思想和方法,解决实际问题的才能目 C类:渗透转化思想,培育同学的自主探究意识;标教学板块 同学学习行为预设 第一板块 A/C 类 8 分钟1说一说圆柱的体积运算公式;说一说2运算圆柱体积需要几个条件,可以是什么?已知条件问题算一算s 和 h v r 和 h v d 和 h v c 和 h v 3算一算;(1)底面积是 35cm

22、 2,高是 10cm;(2)底面半径是 5cm,高是 6cm;(3)底面直径是 80dm,高是 15dm;(4)底面周长是 25.12m,高是 5m;其次板块A/B/C 类 30 分钟1. 同学摸索:要求1、练习三第 7 题;2、练习三第 5 题;粮囤所能装的玉米 的重量,需先知道指导同学变换公式:由于VSh,所以 hV S;什么?然后独立完也可以列方程解答;成;3、练习三第 8 题;2. 同学挑选宠爱的(1)求削减的土方石就是求月亮门所占的空间,方 法 解 答 这 道 题 目;3. 同学读题后,指 名说说对题意的理 解 4. 懂得题意后同学而月亮门所占的空间是一个底面直径为2 米,高为 0.

23、25米的圆柱;(2)在充分懂得题意后同学独立完成,集体订正;4、练习三第 9、10 题独立完成,集体订(1)同学独立审题,完成 9、10 两题;正(2)评讲第 9 题:要怎样才能判定出 800ml 的果汁够倒三杯吗?必需先求出什么?怎么求?(需先求出圆柱形玻璃杯的容积,用公式 VSh)(3)指名说说解答第 10 题的思路:依据两个圆柱 5. 指名说说解答第的底面积相等这一条件,先求出其中一个圆柱的底面 积;利用这个底面积再求出另一个圆柱的体积;第三板块 教学小结 2 分钟 这节课我们学习了什么?通过这节课的学习你有什么 收成?板书设计 圆柱的体积练习课V=sh h=v s 10 题的思路教学反

24、思:课题: 圆柱的表面积和体积课时: 1 总课时: 12 学习使同学进一步娴熟把握求圆柱表面积和体积的方法,并能运用所学目学问解决有关问题;标教学板块一说;同学学习行为预设第一板块12 分钟1.说一说,回忆学问1说已知条件问题圆 柱 表 面( 1)底面积高体积 的 计 算底面半径高方法;2.体会用不同的条( 2)运 用 表 面底面直径高积积 知 识 解决 实 际 问底面周长高题时,要注意什么?件敏捷解决实际问(3)圆柱体积的运算方法(公式) ;题(4)运算圆柱体积需要什么已知条件?应用学问,独立完成2算一算(1)一个圆柱侧面积是50.24 平方厘米,底面积是12.56 平方厘米,它的表面积是多

25、少平方厘米?(2)一个圆柱体底面半径是10 厘米,高 20 厘米,它的表面积是多少平方厘米?体积是多少立方厘米?3挑选题;(将正确的答案划掉)(1)一只铁皮水桶能装水多少升是求水桶的(侧 面积、表面积、容积、体积) ;(2)做一只圆柱体的油桶,至少要用多少铁皮,是求油桶的(侧面积、表面积、容积、体积);(3)做一节圆柱形铁皮通风管,要用多少铁皮是 求通风管的(侧面积、表面积、容积、体积);(4)求一段圆柱形钢条有多少立方米,是求它的(侧面积、表面积、容积、体积) ;其次板块 26 分钟 1判定题:对的打“ ”,错的打“ ” ;(1)两个圆柱的侧面积相等,它们的体积肯定相懂得学问,实践应等; (

26、)用(2)两个圆柱底面积和高分别相等,它们的体积也相等; ()独立完成,指名分 析,集体订正(3)圆柱底面积和高都扩大2 倍,体积就扩大4倍; ()(4)一个圆柱底面周长和高多扩大2 倍,体积就扩大 4 倍 ()2一个圆柱体积是94.2 立方厘米,底面直径4 厘米,它的高是多少厘米?3一个圆柱形水池底面直径8 米,池深 3 米,如果在水池的底面和四周涂上水泥,涂水泥的面积有多少平方米?水池修好后最多能盛水多少立方米?第三板块 教学小结 2 分钟这节课我们学习了什么?通过这节课的学习你有什么收成?板书设计 圆柱的表面积和体积圆柱表面积 = 侧面积 + 底面积 2 教学反思:圆柱的体积 = 底面积

27、 高总课时: 13 V=sh课时: 1 课题:圆锥的熟识教材与学情分析:这部分内容主要包括:圆锥的特点及各部分名称,其编排与圆柱的熟识类似;教材从展现生活中常见的圆锥形实物图入手,提出问题“ 上面这些物体的外形有什 么共同特点?” 使同学对圆锥进行初步感知;接着从实物图中抽象出圆锥的几何图 形,标明这样的图形叫圆锥,完成从详细到抽象的过渡,并让同学说说仍见过哪些 圆锥形的物体,巩固圆锥的表象;A 类: 熟识圆锥,把握圆锥的特点学 习B 类:熟识圆锥的高,能用工具测量圆锥的高目 C 类:培育同学动手操作才能、观看分析才能 标 教学板块 同学学习行为预设 第一板块 3 分钟 1、圆柱体积的运算公式

28、是什么?回忆旧知2、圆柱的特点是什么?其次板块 A/B/C 类 15 分钟 1、圆锥的熟识(1)实物投影出现课文情境图, 让同学观看这些物体有什么特点;(2)让同学拿着圆锥模型观看和摆布后,指定几名同学1.在图上标出顶点,底面及其圆心 O 说出自己观看的结果,从而使同学熟识到圆锥有一个曲面,一个顶点和一个面是圆的,等等;(3)圆锥有一个顶点,它的底面是一个圆、2.在图上标出侧面(4)圆锥有一个曲面,圆锥的这个曲面叫做侧面;3.让同学看着教具,2、小结 指出:从圆锥的顶点圆锥的特点(可以启示同学总结) ,强调底面和高的特点,究竟面圆心的距离叫使同学弄清圆锥的特点是:底面是圆,侧面是一个曲面,有

29、做高;(沿着曲面上的一个顶点和一条高线都不是圆锥的高,3、测量圆锥的高 由于圆锥只有一个顶由于圆锥的高在它的内部, 我们不能直接量出它的长度,点,所以圆锥只有一这就需要借助一块平板来测量;条高)(1)先把圆锥的底面放平;(2)用一块平板水平地放在圆锥的顶点上面;(3)竖直地量出平板和底面之间的距离;4、教学圆锥侧面的绽开图4.通过操作,使同学(1)同学猜想圆锥的侧面绽开后会是什么图形呢?发觉转动出来的是圆(2)试验来得出圆锥的侧面绽开后是一个扇形;锥,并从旋转的角度 5、虚拟的圆锥 熟识圆锥;先让同学推测:一个长方形通过旋转,可以形成一个圆柱;那么将三角形制片围着一条直角边旋转,会形成什么形

30、状?第三板块 巩固练习 B22 分钟 1、做第 24 页“ 做一做” 的题目;让同学拿出课前预备好的模型纸样,先做成圆锥,然后 让同学试着独立量出它的底面直径老师行间巡察,对有困5.同学试着独立量出 它的底面直径难的同学准时辅导;2、练习四的第 1 题;6.让同学说说自己周 围仍有哪些物体是由让同学自由地观看,只要是接近于圆柱、圆锥的都可以 圆柱、圆锥组成的;指出;3完成练习四的第 2 题;第四板块 教学小结 3 分钟这节课我们学习了什么?通过这节课的学习你有什么收成?第五板块 作业设计板书设计圆锥的熟识一个底面 是一个圆;圆锥 高:从圆锥的顶点究竟面圆心的距离; (只有一条)教学反思:一个侧

31、面(曲面)绽开是一个扇形;课题:圆锥的体积课时: 1 总课时: 14 教材与学情分析:这里支配了两个例题,例 2 教学圆锥体积公式的推导,例 3 是圆锥体积 公式的应用;教材例 2 按引出问题联想、推测试验探究导出公 式四个层次编排;例 3 教学圆锥的体积运算;题目给出了圆锥形沙堆的底面 直径和高,求沙堆的体积;通过这个例题的教学,使同学初步学会解决一些 与运算圆锥形物体的体积有关的实际问题;A 类:经受圆锥体积运算公式的推导过程,懂得并把握圆锥体积的 学 运算公式,能正确地运算圆锥体积;习 B 类:能运用圆锥体积的运算方法,解决有关实际问题,增强同学 的应用意识;目 标 C 类:进一步丰富对

32、空间的熟识,建立空间观念,进展同学的形象 思维;教学板块个体学习清单 回忆学问,为迁移 做预备;第一板块A/C 类3 分钟1、圆锥有什么特点?(使同学进一步熟识圆锥的特 征:底面、侧面、高和顶点)2、圆柱体积的运算公式是什么?指名同学回答,并板书公式: “ 圆柱的体积底面积 高” ;其次板块 B1/B2 类 18 分钟1、教学圆锥体积的运算公式;(1)回忆圆柱体积运算公式的推导过程,使同学明确求圆柱的体积是通过切拼成长方体来求得的(2)圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢? (指出: 我们可以通过试验的方法, 得到运算圆锥体积的公式)(3)拿出等底等高的圆柱和圆锥各一个,通过演

33、示,1.同学留意观看,记录几次,使同学使同学发觉“ 这个圆锥和圆柱是等底等高的,下面我们通过试验,看看它们之间的体积有什么关系?”(4)先在圆锥里装满水,然后倒入圆柱;让同学注 意观看,倒几次正好把圆柱装满?清晰地看到倒3次正好把圆柱装 满;(5)这说明白什么?板书:圆锥的体积1 圆柱的体积31 底面积 高3字母公式: V1 Sh 32. 这 说 明 圆 锥 的 体积是和它等底等高的圆柱的体 积的 1/3 2、教学练习四第 3 题(1)这道题已知什么?求什么?已知圆锥的底面积 和高应当怎样运算?2. 让 学 生 自 己 进 行运算,做完后集体订正(2)引导同学对比圆锥体积的运算公式代入数据;3

34、、巩固练习:完成练习四第 4 题;4、教学例 3(1)出示例 3 已知近似于圆锥形的沙堆的底面直径和高,求这堆沙3. 由 于 这 堆 沙 堆 近似圆锥形,所以 可利用圆锥的体 积公式来求,需先 已知沙堆的底面 积和高 4. 先 算 出 沙 堆 的 底面半径,再利用堆的的体积;(2)要求沙堆的体积需要已知哪些条件?(3)题目的条件中不知道圆锥的底面积,应当怎么 办?(4)分析完后,指定两名同学板演,其余同学将计算步骤写在教科书第26 页上做完后集体订正;圆的面积公式算 出麦堆的底面积,然后依据圆锥的 体积公式求出沙 堆的体积 5. 注 意 学 生 最 后 得数的取舍方法 是否正确第三板块巩固练习B15 分钟完成练习四的第 68 题指名同学板演,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论