2022-2023学年浙江省杭州市公益中学数学九年级第一学期期末质量跟踪监视模拟试题含解析_第1页
2022-2023学年浙江省杭州市公益中学数学九年级第一学期期末质量跟踪监视模拟试题含解析_第2页
2022-2023学年浙江省杭州市公益中学数学九年级第一学期期末质量跟踪监视模拟试题含解析_第3页
2022-2023学年浙江省杭州市公益中学数学九年级第一学期期末质量跟踪监视模拟试题含解析_第4页
2022-2023学年浙江省杭州市公益中学数学九年级第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1如图,等腰直角三角形ABC的腰长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿AB和AC的路径向点B、C运动,设运动时间为x(单位:s),四

2、边形PBC Q的面积为y(单位:cm2),则y与x(0 x4)之间的函数关系可用图象表示为( )ABCD2如图,将绕点按逆时针方向旋转后得到,若,则的度数为( )ABCD3把中考体检调查学生的身高作为样本,样本数据落在1.62.0(单位:米)之间的频率为0.28,于是可估计2000名体检中学生中,身高在1.62.0米之间的学生有( )A56B560C80D1504如图,在正方形中,为边上的点,连结,将绕点逆时针方向旋转得到,连结,若,则的度数为( )ABCD5如图所示的工件,其俯视图是()ABCD6如图,ABC中AB两个顶点在x轴的上方,点C的坐标是(1,0),以点C为位似中心,在x轴的下方作

3、ABC的位似图形ABC,且ABC与ABC的位似比为2:1设点B的对应点B的横坐标是a,则点B的横坐标是()ABCD7抛物线y=x2-2x+m与x轴有两个交点,则m的取值范围为( )Am1Bm1Cm1Dm18如图,数轴上的点可近似表示的值是( )A点AB点BC点CD点D9不透明袋子中有个红球和个白球,这些球除颜色外无其他差别,从袋中随机取出个球,是红球的概率是( )ABCD10若,面积之比为,则相似比为( )ABCD二、填空题(每小题3分,共24分)11已知一元二次方程的两根为、,则_12若二次函数ymx2+2x+1的图象与x轴有公共点,则m的取值范围是 _13将矩形纸片ABCD按如下步骤进行操

4、作:(1)如图1,先将纸片对折,使BC和AD重合,得到折痕EF;(2)如图2,再将纸片分别沿EC,BD所在直线翻折,折痕EC和BD相交于点O那么点O到边AB的距离与点O到边CD的距离的比值是_14如图,一个小球由地面沿着坡度i=1:3的坡面向上前进了10m,此时小球距离地面的高度为_m.15如图,P是等边ABC内的一点,若将PAC绕点A按逆时针方向旋转到PAB,则PAP_16如图,矩形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:第一步:如图,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图,沿三角形EBC的中位线GH将纸

5、片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图,将MN左侧纸片绕G点按顺时针旋转180,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片(裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最大值为_cm17中国“一带一路”给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入20000元,到2018年人均年收入达到39200元则该地区居民年人均收入平均增长率为_(用百分数表示)18在二次函数中,y与x的部分对应值如下

6、表:x.-101234.y.-7-2mn-2-7.则m、n的大小关系为m_n(填“”,“=”或“”)三、解答题(共66分)19(10分)深圳国际马拉松赛事设有A“全程马拉松”,B“半程马拉松”,C“嘉年华马拉松”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.(1)小智被分配到A“全程马拉松”项目组的概率为 .(2)用树状图或列表法求小智和小慧被分到同一个项目标组进行志愿服务的概率.20(6分)如图,ABC与ABC是以点O为位似中心的位似图形,它们的顶点都在正方形网格的格点上(1)画出位似中心O;(2)ABC与ABC的相似比为_,面积比为_.21(6分)如

7、图,某仓储中心有一斜坡AB,其坡比为i12,顶部A处的高AC为4 m,B,C在同一水平面上(1)求斜坡AB的水平宽度BC;(2)矩形DEFG为长方形货柜的侧面图,其中DE2.5 m,EF2 m将货柜沿斜坡向上运送,当BF3.5 m时,求点D离地面的高(2.236,结果精确到0.1 m)22(8分)华联超市准备代销一款运动鞋,每双的成本是170元,为了合理定价,投放市场进行试销据市场调查,销售单价是200元时,每天的销售量是40双,而销售单价每降低1元,每天就可多售出5双,设每双降低x元(x为正整数),每天的销售利润为y元(1)求y与x的函数关系式;(2)每双运动鞋的售价定为多少元时,每天可获得

8、最大利润?最大利润是多少?23(8分)已知二次函数yx22xm(m为常数)的图像与x轴相交于A、B两点(1)求m的取值范围;(2)若点A、B位于原点的两侧,求m的取值范围24(8分)如图,点E,F,G,H分别位于边长为a的正方形ABCD的四条边上,四边形EFGH也是正方形,AGx,正方形EFGH的面积为y(1)当a2,y3时,求x的值;(2)当x为何值时,y的值最小?最小值是多少?25(10分)已知,如图1,在中,对角线,如图2,点从点出发,沿方向匀速运动,速度为,过点作交于点;将沿对角线剪开,从图1的位置与点同时出发,沿射线方向匀速运动,速度为,当点停止运动时,也停止运动设运动时间为,解答下

9、列问题:(1)当为何值时,点在线段的垂直平分线上?(2)设四边形的面积为,试确定与的函数关系式;(3)当为何值时,有最大值?(4)连接,试求当平分时,四边形与四边形面积之比26(10分)在矩形ABCD中,O是对角线AC的中点,EF是线段AC的中垂线,交AD、BC于E、F求证:四边形AECF是菱形参考答案一、选择题(每小题3分,共30分)1、C【解析】先计算出四边形PBCQ的面积,得到y与x的函数关系式,再根据函数解析式确定图象即可.【详解】由题意得: (0 x4),可知,抛物线开口向下,关于y轴对称,顶点为(0,8),故选:C.【点睛】此题考查二次函数的性质,根据题意列出解析式是解题的关键.2

10、、A【分析】根据旋转的性质即可得到结论【详解】解:将绕点按逆时针方向旋转后得到,故选:A【点睛】本题考查了三角形内角和定理,旋转的性质的应用,能求出ACD的度数是解此题的关键3、B【分析】由题意根据频率的意义,每组的频率=该组的频数:样本容量,即频数=频率样本容量数据落在1.62.0(单位:米)之间的频率为0.28,于是2 000名体检中学生中,身高在1.62.0米之间的学生数即可求解【详解】解:0.282000=1故选:B【点睛】本题考查频率的意义与计算以及频率的意义,注意掌握每组的频率=该组的频数样本容量4、D【分析】根据旋转的性质可知,然后得出,最后利用即可求解【详解】绕点逆时针方向旋转

11、得到, ,故选:D【点睛】本题主要考查旋转的性质及等腰直角三角形的性质,掌握旋转的性质及等腰直角三角形的性质是解题的关键5、B【解析】试题分析:从上边看是一个同心圆,外圆是实线,內圆是虚线,故选B点睛:本题考查了简单组合体的三视图,从上边看得到的图形是俯视图看得见部分的轮廓线要画成实线,看不见部分的轮廓线要画成虚线6、D【解析】设点B的横坐标为x,然后表示出BC、BC的横坐标的距离,再根据位似变换的概念列式计算【详解】设点B的横坐标为x,则B、C间的横坐标的长度为1x,B、C间的横坐标的长度为a+1,ABC放大到原来的2倍得到ABC,2(1x)a+1,解得x(a+3),故选:D【点睛】本题考查

12、了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键7、C【分析】抛物线与轴有两个交点,则,从而求出的取值范围【详解】解:抛物线与轴有两个交点故选:C【点睛】本题考查了抛物线与轴的交点问题,注:抛物线与轴有两个交点,则;抛物线与轴无交点,则;抛物线与轴有一个交点,则8、C【分析】先把代数式进行化简,然后进行无理数的估算,即可得到答案【详解】解:,点C符合题意;故选:C【点睛】本题考查了二次根式的化简,无理数的估算,解题的关键是掌握运算法则,正确的进行化简9、D【分析】利用概率公式直接求解即可.【详解】解:袋子装有个球,其中个红球,个白球,

13、从中任意摸出一个球,则摸出的球是红球的概率是:故选:【点睛】本题考查的是利用概率的定义求事件的概率.10、C【分析】根据相似三角形的面积比等于相似比的平方可直接得出结果【详解】解:两个相似三角形的面积比为9:4,它们的相似比为3:1故选:C【点睛】此题主要考查了相似三角形的性质:相似三角形的面积比等于相似比的平方二、填空题(每小题3分,共24分)11、1【分析】根据根与系数的关系得到x1+x2=-3,x1x2=-4,再利用完全平方公式变形得到x12+x1x2+x22=(x1+x2)2-x1x2,然后利用整体代入的方法计算【详解】根据题意得x1+x2=-3,x1x2=-4,所以x12+x1x2+

14、x22=(x1+x2)2-x1x2=(-3)2-(-4)=1故答案为1【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a0)的两根时,x1+x2=-,x1x2=12、m1且m1【分析】由抛物线与x轴有公共点可知1,再由二次项系数不等于1,建立不等式即可求出m的取值范围.【详解】解:ymx2+2x+1是二次函数,m1,由题意可知:1,44m1,m1m1且m1故答案为m1且m1【点睛】本题考查二次函数图像与x轴的交点问题,熟练掌握交点个数与的关系是解题的关键.13、【分析】根据折叠的性质得到BEAB,根据矩形的性质得到ABCD,BOEDOC,再根据相似三角形的性质

15、即可求解【详解】解:由折叠的性质得到BEAB,四边形ABCD是矩形,ABCD,BOEDOC,BOE与DOC的相似比是,点O到边AB的距离与点O到边CD的距离的比值是故答案为:【点睛】本题考查了翻折变换(折叠问题)、矩形的性质、相似三角形的判定与性质等知识,综合性强,还考查了操作、推理、探究等能力,是一道好题14、【详解】如图:RtABC中,C=90,i=tanA=1:3,AB=1设BC=x,则AC=3x,根据勾股定理,得:,解得:x=(负值舍去)故此时钢球距地面的高度是米15、60【解析】试题分析:根据旋转图形的性质可得:PAP=BAC=60.考点:旋转图形的性质16、【分析】首先确定剪拼之后

16、的四边形是个平行四边形,其周长大小取决于MN的大小然后在矩形中探究MN的不同位置关系,得到其长度的最大值与最大值,从而问题解决【详解】解:画出第三步剪拼之后的四边形M1N1N2M2的示意图,如答图1所示图中,N1N2=EN1+EN2=NB+NC=BC,M1M2=M1G+GM+MH+M2H=2(GM+MH)=2GH=BC(三角形中位线定理),又M1M2N1N2,四边形M1N1N2M2是一个平行四边形,其周长为2N1N2+2M1N1=2BC+2MNBC=6为定值,四边形的周长取决于MN的大小如答图2所示,是剪拼之前的完整示意图,过G、H点作BC边的平行线,分别交AB、CD于P点、Q点,则四边形PB

17、CQ是一个矩形,这个矩形是矩形ABCD的一半,M是线段PQ上的任意一点,N是线段BC上的任意一点,根据垂线段最短,得到MN的最小值为PQ与BC平行线之间的距离,即MN最小值为4;而MN的最大值等于矩形对角线的长度,即,四边形M1N1N2M2的周长=2BC+2MN=12+2MN,最大值为12+2=12+故答案为:12+【点睛】此题通过图形的剪拼,考查了动手操作能力和空间想象能力,确定剪拼之后的图形,并且探究MN的不同位置关系得出四边形周长的最值是解题关键17、40%【解析】设该地区居民年人均收入平均增长率为,根据到2018年人均年收入达到39200元列方程求解即可.【详解】设该地区居民年人均收入

18、平均增长率为,解得,(舍去),该地区居民年人均收入平均增长率为,故答案为:【点睛】本题考查了一元二次方程的应用-增长率问题;本题的关键是掌握增长率问题中的一般公式为a(1+x)n=b,其中n为共增长了几年,a为第一年的原始数据,b是增长后的数据,x是增长率18、=【分析】根据表格的x、y的值找出函数的对称轴,即可得出答案【详解】解:由表格知:图象对称轴为:直线x,m,n分别为点(1,m)和(2,n)的纵坐标,两点关于直线x对称,m=n,故答案为:=【点睛】本题考查了二次函数图象上点的坐标特征,能根据表中点的坐标特点找出对称轴是解此题的关键三、解答题(共66分)19、(1)(2)【分析】(1)直

19、接利用概率公式可得;(2)记这三个项目分别为A、B、C,画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得【详解】(1)小智被分配到A“全程马拉松”项目组的概率为,故答案为:.(2)画树状图为:共有9种等可能的结果数,其中小智和小慧被分配到同一个项目组的结果数为3,所以小智和小慧被分到同一个项目组进行志愿服务的概率为.【点睛】本题主要考察概率,熟练掌握概率公式是解题关键.20、(1)作图见解析;(2)21;41.【详解】(1)根据位似的性质,延长AA、BB、CC,则它们的交点即为位似中心O;(2)根据位似的性质得到AB:AB=OA:OA=2:1,则ABC与ABC的相似

20、比为2:1,然后根据相似三角形的性质得到它们面积的比解:(1)如图,点O为位似中心;(2)因为AB:AB=OA:OA=12:6=2:1,所以ABC与ABC的相似比为2:1,面积比为4:1.故答案为2:1; 4:1.点睛:本题主要考查位似知识.利用位似的性质找出位似中心是解题的关键.21、 (1) BC8 m;(2)点D离地面的高为4.5 m.【分析】(1)根据坡度定义直接解答即可;(2)作DSBC,垂足为S,且与AB相交于H证出GDH=SBH,根据,得到GH=1m,利用勾股定理求出DH的长,然后求出BH=5m,进而求出HS,然后得到DS【详解】(1)坡度为i=1:2,AC=4m, BC=42=

21、8m.(2)作DSBC,垂足为S,且与AB相交于H.DGH=BSH,DHG=BHS, GDH=SBH, DG=EF=2m, GH=1m, DH=m,BH=BF+FH=3.5+(2.5-1)=5m,设HS=xm,则BS=2xm, x2+(2x)2=52,x=m,DS=+=2m4.5m22、(1)y=5x2+110 x+1200;(2) 售价定为189元,利润最大1805元【解析】利润等于(售价成本)销售量,根据题意列出表达式,借助二次函数的性质求最大值即可;【详解】(1)y(200 x170)(40+5x)5x2+110 x+1200;(2)y5x2+110 x+12005(x11)2+1805

22、,抛物线开口向下,当x11时,y有最大值1805,答:售价定为189元,利润最大1805元;【点睛】本题考查实际应用中利润的求法,二次函数的应用;能够根据题意列出合理的表达式是解题的关键23、(1)m1;(2)m0【分析】(1)根据题意可知一元二次方程有两个不相等的实数根,即b2-4ac0然后利用根的判别式确定取值范围;(2)由题意得:x1x20,即m0,即可求解;【详解】解:(1)二次函数yx22xm的图象与x轴相交于A、B两点则方程x22xm=0有两个不相等的实数根b2-4ac0,4-4m0,解得:m1;(2)点A、B位于原点的两侧则方程x22xm=0的两根异号,即x1x20 m0【点睛】

23、本题考查的是二次函数图象与系数的关系,要求学生对函数基本性质、函数与坐标轴的交点等的求解熟悉,这是一个综合性很好的题目24、(1)x;(1)当xa(即E在AB边上的中点)时,正方形EFGH的面积最小,最小的面积为a1【分析】(1)设正方形ABCD的边长为a,AEx,则BEax,易证AHEBEFCFGDHG,再利用勾股定理求出EF的长,进而得到正方形EFGH的面积;(1)利用二次函数的性质即可求出面积的最小值【详解】解:设正方形ABCD的边长为a,AEx,则BEax,四边形EFGH是正方形,EHEF,HEF90,AEH+BEF90,AEH+AHE90,AHEBEF,在AHE和BEF中,AHEBEF(AAS),同理可证AHEBEFCFGDHG,AEBFCGDHx,AHBECFDGaxEF1BE1+BF1(ax)1+x11x11ax+a1,正方形EFGH的面积yEF11x11ax+a1,当a1,y3时,1x14x+43,解得:x;(1)y1x11ax+a11

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论