2022年北京市通州区九年级数学第一学期期末学业质量监测模拟试题含解析_第1页
2022年北京市通州区九年级数学第一学期期末学业质量监测模拟试题含解析_第2页
2022年北京市通州区九年级数学第一学期期末学业质量监测模拟试题含解析_第3页
2022年北京市通州区九年级数学第一学期期末学业质量监测模拟试题含解析_第4页
2022年北京市通州区九年级数学第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1下列图形中,是轴对称图形但不是中心对称图形的是( )A平行四边形B等腰三角形C矩形D正方形2将抛物线向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析是( )ABCD3如图,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点B

2、,点C是AB的中点,ECD绕点C按顺时针旋转,且ECD=45,ECD的一边CE交y轴于点F,开始时另一边CD经过点O,点G坐标为(-2,0),当ECD旋转过程中,射线CD与x轴的交点由点O到点G的过程中,则经过点B、C、F三点的圆的圆心所经过的路径长为( )ABCD4张家口某小区要种植一个面积为3500m2的矩形草坪,设草坪的长为ym,宽为xm,则y关于x的函数解析式为()Ay3500 xBx3500yCyDy5如图,在平行四边形中,点是边上一点,且,交对角线于点,则等于( )ABCD6一元二次方程x2+x+10的根的情况是()A有两个不相等的实数根B有两个相等的实数根C没有实数根D以上说法都

3、不对7小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( )A方差B平均数C众数D中位数8如图,已知ABC与DEF位似,位似中心为点O,且ABC的面积等于DEF面积的,则AO:AD的值为()A2:3B2:5C4:9D4:139若关于x的一元二次方程有实数根,则实数k的取值范围为A,且B,且CD10如图,将ABC绕点A顺时针旋转 60得到AED,若线段AB=3,则BE=()A2B3C4D5二、填空题(每小题3分,共24分)11如图,抛物线解析式为yx2,点A1的坐标为(1,1),连接OA1;过A1作A1B1OA1,分别交y轴、抛物线于点P1、B1;过B1作B1

4、A2A1B1分别交y轴、抛物线于点P2、A2;过A2作A2B2B1A2,分别交y轴、抛物线于点P3、B2;则点Pn的坐标是_12如图,在菱形中,边长为10,顺次连结菱形各边中点,可得四边形;顺次连结四边形各边中点,可得四边形;顺次连结四边形各边中点,可得四边形;按此规律继续下去则四边形的周长是_13小芳的房间有一面积为3m2的玻璃窗,她站在室内离窗子4m的地方向外看,她能看到窗前面一幢楼房的面积有_m2(楼之间的距离为20m).14某市某楼盘的价格是每平方米6500元,由于市场萎靡,开发商为了加快资金周转,决定进行降价促销,经过连续两次下调后,该楼盘的价格为每平方米5265元. 设平均每次下调

5、的百分率为,则可列方程为_.15某班级准备举办“迎鼠年,闹新春”的民俗知识竞答活动,计划A、B两组对抗赛方式进行,实际报名后,A组有男生3人,女生2人,B组有男生1人,女生4人,若从两组中各随机抽取1人,则抽取到的两人刚好是1男1女的概率是_16平面直角坐标系xOy中,若点P在曲线y上,连接OP,则OP的最小值为_17如图,直线l经过O的圆心O,与O交于A、B两点,点C在O上,AOC=30,点P是直线l上的一个动点(与圆心O不重合),直线CP与O相交于点Q,且PQ=OQ,则满足条件的OCP的大小为_18已知反比例函数y(k0)的图象经过点(3, m),则m_。三、解答题(共66分)19(10分

6、)现如今,“垃圾分类”意识已深入人心,垃圾一般可分为:可回收物、厨余垃圾、有害垃圾、其它垃圾其中甲拿了一袋垃圾,乙拿了两袋垃圾(1)直接写出甲所拿的垃圾恰好是“厨余垃圾”的概率;(2)求乙所拿的两袋垃圾不同类的概率20(6分)如图,边长为3正方形的顶点与原点重合,点在轴,轴上。反比例函数的图象交于点,连接,.(1)求反比例函数的解析式;(2)过点作轴的平行线,点在直线上运动,点在轴上运动.若是以为直角顶点的等腰直角三角形,求的面积;将“”中的“以为直角顶点的”去掉,将问题改为“若是等腰直角三角形”,的面积除了“”中求得的结果外,还可以是_.(直接写答案,不用写步骤)21(6分)如图所示,线段,

7、点为射线上一点,平分交线段于点(不与端点,重合).(1)当为锐角,且时,求四边形的面积;(2)当与相似时,求线段的长;(3)设,求关于的函数关系式,并写出定义域.22(8分)已知,在平面直角坐标系中,二次函数的图象与轴交于点,与轴交于点,点的坐标为,点的坐标为(1)如图1,分别求的值;(2)如图2,点为第一象限的抛物线上一点,连接并延长交抛物线于点,求点的坐标;(3)在(2)的条件下,点为第一象限的抛物线上一点,过点作轴于点,连接、,点为第二象限的抛物线上一点,且点与点关于抛物线的对称轴对称,连接,设,点为线段上一点,点为第三象限的抛物线上一点,分别连接,满足,过点作的平行线,交轴于点,求直线

8、的解析式23(8分)春节期间,支付宝“集五福”活动中的“集五福”福卡共分为5种,分别为富强福、和谐福、友善福、爱国福、敬业福,从国家、社会和个人三个层面体现了社会主义核心价值观的价值目标.(1)小明一家人春节期间参与了支付宝“集五福”活动,小明和姐姐都缺一个“敬业福”,恰巧爸爸有一个可以送给他们其中一个人,两个人各设计了一个游戏,获胜者得到“敬业福”在一个不透明盒子里放入标号分别为1,2,3,4的四个小球,这些小球除了标号数字外都相同,将小球摇匀小明的游戏规则是:从盒子中随机摸出一个小球,摸到标号数字为奇数小球,则判小明获胜,否则,判姐姐获胜请判断,此游戏规则对小明和姐姐公平吗?说明理由姐姐的

9、游戏规则是:小明从盒子中随机摸出一个小球,记下标号数字后放回盒里,充分摇匀后,姐姐再从盒中随机摸出一个小球,并记下标号数字.若两次摸到小球的标号数字同为奇数或同为偶数,则判小明获胜,若两次摸到小球的标号数字为一奇一偶,则判姐姐获胜请用列表法或画树状图的方法进行判断此游戏规则对小明和姐姐是否公平.(2)“五福”中体现了社会主义核心价值观的价值目标的个人层面有哪些?24(8分)如图,在中,点均在边上,且(1)将绕A点逆时针旋转,可使AB与AC重合,画出旋转后的图形,在原图中补出旋转后的图形(2)求和的度数25(10分)如图,已知AB是O的直径,BCAB,连结OC,弦ADOC,直线CD交BA的延长线

10、于点E,(1)求证:直线CD是O的切线;(2)若DE=2BC,求AD:OC的值26(10分)有甲乙两个不透明的布袋,甲布袋装有个形状和重量完全相同的小球,分别标有数字和;乙布袋装有个形状和重量完全相同的小球,分别标有数字,和先从甲布袋中随机取出一个小球,将小球上标有的数字记作;再从乙布袋中随机取出一个小球,再将小球标有的数字记作(1)用画树状图或列表法写出两次摸球的数字可能出现的所有结果;(2)若从甲、乙两布袋中取出的小球上面的数记作点的坐标,求点在一次函数图象上的概率是多少?参考答案一、选择题(每小题3分,共30分)1、B【分析】根据轴对称图形的概念和中心对称图形的概念进行分析判断【详解】解

11、: 选项A,平行四边形不是轴对称图形,是中心对称图形,错误;选项B,等腰三角形是轴对称图形,不是中心对称图形,正确选项C,矩形是轴对称图形,也是中心对称图形;错误;选项D,正方形是轴对称图形,也是中心对称图形,错误;故答案选B【点睛】本题考查轴对称图形的概念和中心对称图形的概念,正确理解概念是解题关键2、B【分析】把配成顶点式,根据“左加右减、上加下减”的原则进行解答即可【详解】解:将抛物线向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线的解析式为:故选:B【点睛】考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减3、A【解析】先确定点B、A、C的坐标,当

12、点G在点O时,点F的坐标为(0,2),此时点F、B、C三点的圆心为BC的中点,坐标为(1,3);当直线OD过点G时,利用相似求出点F的坐标,根据圆心在弦的垂直平分线上确定圆心在线段BC的垂直平分线上,故纵坐标为,利用两点间的距离公式求得圆心的坐标,由此可求圆心所走的路径的长度.【详解】直线与x轴交于点A,与y轴交于点B,B(0,4),A(4,0),点C是AB的中点,C(2,2),当点G在点O时,点F的坐标为(0,2),此时点F、B、C三点的圆心为BC的中点,坐标为(1,3);当直线OD过点G时,如图,连接CN,OC,则CN=ON=2,OC=,G(-2,0),直线GC的解析式为:,直线GC与y轴

13、交点M(0,1),过点M作MHOC,MOH=45,MH=OH=,CH=OC-OH=,NCO=FCG=45,FCN=MCH,又FNC=MHC,FNCMHC,即,得FN=,F(,0),此时过点F、B、C三点的圆心在BF的垂直平分线上,设圆心坐标为(x,),则,解得,当ECD旋转过程中,射线CD与x轴的交点由点O到点G的过程中,则经过点B、C、F三点的圆的圆心所经过的路径为线段,即由BC的中点到点(,),所经过的路径长=.故选:A.【点睛】此题是一道综合题,考查一次函数的性质,待定系数法求函数的解析式,相似三角形的判定及性质定理,两点间的距离公式,综合性比较强,做题时需时时变换思想来解题.4、C【解

14、析】根据矩形草坪的面积=长乘宽,得 ,得 .故选C.5、A【分析】根据平行四边形的性质和相似三角形的性质解答即可.【详解】解:四边形是平行四边形,ADBC,AD=BC=3ED, EDB=CBD,DEF=BCF,DFEBFC,.故选:A.【点睛】本题考查了平行四边形的性质和相似三角形的判定和性质,属于常考题型,熟练掌握相似三角形的判定和性质是解题的关键.6、C【分析】先计算出根的判别式的值,根据的值就可以判断根的情况【详解】b2-4ac1-411-3-30原方程没有实数根故选:C【点睛】本题考查了一元二次方程的知识;解题的关键是熟练掌握一元二次方程判别式的性质,从而完成求解7、A【分析】根据方差

15、的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差【详解】平均数,众数,中位数都是反映数字集中趋势的数量,方差是反映数据离散水平的数据,也就会说反映数据稳定程度的数据是方差故选A考点:方差8、B【分析】由ABC经过位似变换得到DEF,点O是位似中心,根据位似图形的性质得到AB:DO2:3,进而得出答案【详解】ABC与DEF位似,位似中心为点O,且ABC的面积等于DEF面积的,ACDF,故选:B【点睛】此题考查了位似图形的性质注意掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方9、A【

16、解析】原方程为一元二次方程,且有实数根,k-10且=62-4(k-1)3=48-12k0,解得k4,实数k的取值范围为k4,且k1,故选A10、B【解析】分析:根据旋转的性质得出BAE=60,AB=AE,得出BAE是等边三角形,进而得出BE=1即可详解:将ABC绕点A顺时针旋转60得到AED,BAE=60,AB=AE,BAE是等边三角形,BE=1故选B点睛:本题考查旋转的性质,关键是根据旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变要注意旋转的三要素:定点-旋转中心;旋转方向;旋转角度二、填空题(每小题3分,共24分)11、(0,n2+n)【分析】根据待定系数法分别求得直线O

17、A1、A2B1、A2B2的解析式,即可求得P1、P2、P3的坐标,得出规律,从而求得点Pn的坐标【详解】解:点A1的坐标为(1,1),直线OA1的解析式为yx,A1B1OA1,OP12,P1(0,2),设A1P1的解析式为ykx+b1,解得,直线A1P1的解析式为yx+2,解求得B1(2,4),A2B1OA1,设B1P2的解析式为yx+b2,2+b24,b26,P2(0,6),解求得A2(3,9)设A1B2的解析式为yx+b3,3+b39,b312,P3(0,12),Pn(0,n2+n),故答案为(0,n2+n)【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,待定系数法求一次函数

18、的解析式,根据一次函数图象上点的坐标特征得出规律是解题的关键12、【分析】根据菱形的性质,三角形中位线的性质以及勾股定理求出四边形各边长,得出规律求出即可【详解】菱形ABCD中,边长为10,A=60,设菱形对角线交于点O,顺次连结菱形ABCD各边中点,AA1D1是等边三角形,四边形A2B2C2D2是菱形, A1D1=A A1=AB =5,C1D1 =AC=5,A2B2=C2D2=C2B2=A2D2=AB=5,四边形A2B2C2D2的周长是:54=20,同理可得出:A3D3=5,C3D3=C1D1=5,A5D5=5,C5D5=C3D3=5,四边形A2019B2019C2019D2019的周长是:

19、故答案为:【点睛】本题主要考查了菱形的性质以及矩形的性质和中点四边形的性质等知识,根据已知得出边长变化规律是解题关键13、108【解析】考点:平行投影;相似三角形的应用分析:在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析解答:解:根据题意:她能看到窗前面一幢楼房的图形与玻璃窗的外形应该相似,且相似比为=6,故面积的比为36;故她能看到窗前面一幢楼房的面积有363=108m1点评:本题考查了平行投影、视点、视线、位似变换、相似三角形对应高的比等于相似比等知识点注意平行投影特点:在同一时刻,不同物体的物高和影长成比例14、【分析】

20、根据连续两次下调后,该楼盘的价格为每平方米5265元,可得出一元二次方程.【详解】根据题意可得,楼盘原价为每平方米6500元,每次下调的百分率为,经过两次下调即为,最终价格为每平方米5265元.故得:【点睛】本题主要考察了一元二次方程的应用,熟练掌握解平均变化率的相关方程题时解题的关键.15、【分析】利用列表法把所有情况列出来,再用概率公式求解即可【详解】列表如下根据表格可知共有25种可能的情况出现,其中抽取到的两人刚好是1男1女的有14种情况抽取到的两人刚好是1男1女的概率是故答案为:【点睛】本题考查了概率的问题,掌握列表法和概率公式是解题的关键16、1【分析】设点P(a,b),根据反比例函

21、数图象上点的坐标特征可得18,根据,且2ab,可求OP的最小值【详解】解:设点P(a,b)点P在曲线y上,180,2ab,且2ab,2ab31,OP最小值为1【点睛】本题考查了反比例函数图象上点的坐标特征,灵活运用2ab是本题的关键17、40【解析】:在QOC中,OC=OQ,OQC=OCQ,在OPQ中,QP=QO,QOP=QPO,又QPO=OCQ+AOC,AOC=30,QOP+QPO+OQC=180,3OCP=120,OCP=4018、-4【分析】将(3, m)代入y即可求出答案.【详解】将(3, m)代入y中,得-3m=12,m=-4,故答案为:-4.【点睛】此题考查反比例函数的解析式,熟练

22、计算即可正确解答.三、解答题(共66分)19、(1) ;(2) .【分析】(1)共四种垃圾,厨余垃圾一种,所以甲拿了一袋垃圾恰好厨余垃圾的概率为:;(2)直接画出树状图,利用树状图解题即可【详解】解:(1)记可回收物、厨余垃圾、有害垃圾、其它垃圾分别为A,B,C,D,垃圾要按A,B,C、D类分别装袋,甲拿了一袋垃圾,甲拿的垃圾恰好是B类:厨余垃圾的概率为:;(2)画树状图如下:由树状图知,乙拿的垃圾共有16种等可能结果,其中乙拿的两袋垃圾不同类的有12种结果,所以乙拿的两袋垃圾不同类的概率为【点睛】本题考查概率的计算以及树状图算概率,掌握树状图法是解题关键20、(1);(2)或.1或2.【解析

23、】(1)设的坐标分别为,根据三角形的面积,构建方程即可解决问题(2)分两种情形画出图形:当点P在线段BM上,当点P在线段BM的延长线上时,分别利用全等三角形的性质求解即可当点Q是等腰三角形的直角顶点时,分两种情形分别求解即可【详解】解:(1)四边形OACD是正方形,边长为3,点B的纵坐标为3,点E的横坐标为3,反比例函数的图象交AC,CD于点B,E,设的坐标分别为.SOBE=4,可得,.解得,(舍).所以,反比例函数的解析式为.(2)如图1中,设直线m交OD于M由(1)可知B(1,3),AB=1,BC=2,当PC=PQ,CPQ=90时,CBP=PMQ=CPQ=90,CPB+BCP=90,CPB

24、+PQM=90,PCB=MPQ,PC=PQ,CBPPMQ(AAS),BC=PM=2,PB=MQ=1,PC=PQ=SPCQ=如图2中,当PQ=PC,CPQ=90,同法可得CBPPMQ(AAS),PM=BC=2,OM=PB=1,PC=PQ=,SPCQ=.所以,的面积为或.当点Q是等腰三角形的直角顶点时,同法可得CQ=PQ=,此时SPCQ=1或CQ=PQ=,可得SPCQ=2,不存在点C为等腰三角形的直角顶点,综上所述,CPQ的面积除了“”中求得的结果外,还可以是1或2故答案为1或2【点睛】本题属于反比例函数综合题,考查了正方形的性质,反比例函数的性质,全等三角形的判定和性质,勾股定理等知识,解题的关

25、键是正确寻找全等三角形解决问题,属于中考常考题型21、(1)16;(2)2或;(3)【分析】(1)过C作CHAB与H,在RtBCH中,求出CH、BH,再求出CD即可解决问题;(2)分两种情形BCE=BAE=90,由BE=BE,得BECBEA;BEC=BAE=90,延长CE交BA延长线于T,得BECBET;分别求解即可;(3)根据DMAB,得,构建函数关系式即可;【详解】解:(1)如图,过作于,四边形为矩形.在中,则四边形的面积. (2)平分,当与相似时,在中,.,延长交延长线于,.令,则在中,解得.综上,当与相似时,线段的长为2或. (3)延长交延长线于,.在中,.则,又,即,解得.【点睛】本

26、题考查了全等三角形与相似三角形的判定和性质,三角函数,勾股定理,以及二次函数的应用,正确作出辅助线构造相似三角形与全等三角形是解题的关键.22、(1),;(2);(3)【分析】(1)将点A、B的坐标代入抛物线表达式,即可求解;(2)作轴于K,轴于L,OD=3OE,则OL=3OK,DL=3KE,设点E的横坐标为t,则点D的横坐标为-3t,则点E、D的坐标分别为:(t,)、(-3t,-+3t+),即可求解;(3)设点的横坐标为,可得PH=m2+m-,过作EFy轴交于点交轴于点,TE=PH+YE=m2+m-+2=(m+1)2,tanAHE=,tanPET=,而AHE+EPH=2,故AHE=PET=E

27、PH=,PH=PQtan,即m2+m-=(2m+2),解得:m=2-1,故YH=m+1=2,PQ=4,点P、Q的坐标分别为:(2-1,4)、(-2-1,4),tanYHE=,tanPQH=;证明PMHWNH,则PH=WH,而QH=2PH,故QW=HW,即W是QH的中点,则W(-1,2),再根据待定系数法即可求解【详解】解:(1)把、分别代入得:,解得;(2)如图2,由(1)得,作轴于K,轴于L,EKDL,设点的横坐标为,的横坐标为,分别把和代入抛物线解析式得,解得(舍),(3)如图3,设点的横坐标为,把代入抛物线得,过作EFy轴交于点交轴于点,轴点与点关于抛物线的对称轴对称,PQx轴,点坐标为

28、,又轴,ETPH,四边形为矩形,又,解得,把代入抛物线得,若交于点,NFPE,作WSPQ,交于点交轴于点,WSHQPH,设的解析式为,把、代入得,解得,FNPE,设的解析式为,把代入得,的解析式为【点睛】本题考查的是二次函数综合运用,涉及到一次函数、三角形全等、解直角三角形等,其中(3)证明PMHWNH是解题的关键23、(1)游戏1对小明和姐姐是公平的;游戏2对小明和姐姐是公平的;(2)友善福、爱国福、敬业福.【分析】(1)在两种游戏中,分别求出小明和姐姐获胜的概率,即可得答案;(2)分别从国家、社会和个人三个层面解答即可得答案.【详解】(1)小明的游戏:共有4种等可能结果,一次摸到小球的标号数字为奇数或为偶数的各有2种,小明获胜的概率为,姐姐获胜的概率为,游戏1对小明和姐姐是公平的;姐姐的游戏:画树状图如下: 共有16种可能情况,其中两次摸到小球的标号数字同为奇数或同为偶数的共有8种,两次摸到小球的标号数字为一奇一偶的结果也共有8种,小明获胜的概率为,姐姐获胜的概率为,游戏2对小明和姐姐是公平的. (2)“五福”中国家层面是:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论