




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1如图,PA、PB、分别切O于A、B两点,P=40,则C的度数为()A40B140C70D802如图,AB,BC是O的两条弦,AOBC,垂足为D,若O的半径为5,BC8,则AB的长为()A8B10CD3已知二次函数y=-x2+2mx+2,当x-2Cm-2Dm-24如图为二次函数yax2+bx+c的
2、图象,在下列说法中:ac1;方程ax2+bx+c1的根是x11,x23;a+b+c1;当x1时,y随x的增大而减小;2ab1;b24ac1下列结论一定成立的是( )ABCD5已知下列命题:等弧所对的圆心角相等;90的圆周角所对的弦是直径;关于x的一元二次方程有两个不相等的实数根,则ac;其中真命题的个数是( )A1个B2个C3个D4个6如图,的半径为2,弦,点P为优弧AB上一动点,交直线PB于点C,则的最大面积是 AB1C2D7如图,已知O上三点A,B,C,半径OC=1,ABC=30,切线PA交OC延长线于点P,则PA的长为( )A2B CD8正八边形的中心角为()A45B60C80D909如
3、图,是等腰直角三角形,且,轴,点在函数的图象上,若,则的值为( )ABCD10顺次连接矩形各边中点得到的四边形是( )A平行四边形B矩形C菱形D正方形二、填空题(每小题3分,共24分)11如图,在RtABC中,ACB=90,点D,E分别是AB,AC的中点,点F是AD的中点若AB=8,则EF=_12若,则=_13方程x2+2x+m=0有两个相等实数根,则m=_14如图,正方形的顶点、在圆上,若,圆的半径为2,则阴影部分的面积是_(结果保留根号和)15图甲是小张同学设计的带图案的花边作品,该作品由形如图乙的矩形图案设计拼接面成(不重叠,无缝隙)图乙中,点E、F、G、H分别为矩形AB、BC、CD、D
4、A的中点,若AB4,BC6,则图乙中阴影部分的面积为_16如图,四边形的项点都在坐标轴上,若与面积分别为和,若双曲线恰好经过的中点,则的值为_17如图,在平面直角坐标系中,等腰RtOA1B1的斜边OA12,且OA1在x轴的正半轴上,点B1落在第一象限内将RtOA1B1绕原点O逆时针旋转45,得到RtOA2B2,再将RtOA2B2绕原点O逆时针旋转45,又得到RtOA3B3,依此规律继续旋转,得到RtOA2019B2019,则点B2019的坐标为_18已知是一张等腰直角三角形板,要在这张纸板中剪取正方形(剪法如图1所示),图1中剪法称为第次剪取,记所得的正方形面积为;按照图1中的剪法,在余下的和
5、中,分别剪取两个全等正方形,称为第次剪取,并记这两个正方形面积和为,(如图2) ;再在余下的四个三角形中,用同样的方法分别剪取正方形,得到四个相同的正方形,称为第次剪取,并记这四个正方形的面积和为,(如图3);继续操作下去则第次剪取后, _三、解答题(共66分)19(10分)定义:点P在ABC的边上,且与ABC的顶点不重合若满足PAB、PBC、PAC至少有一个三角形与ABC相似(但不全等),则称点P为ABC的自相似点如图,已知点A、B、C的坐标分别为(1,0)、(3,0)、(0,1)(1)若点P的坐标为(2,0),求证点P是ABC的自相似点;(2)求除点(2,0)外ABC所有自相似点的坐标;(
6、3)如图,过点B作DBBC交直线AC于点D,在直线AC上是否存在点G,使GBD与GBC有公共的自相似点?若存在,请举例说明;若不存在,请说明理由20(6分)如图1,在矩形ABCD中AB=4, BC=8,点E、F是BC、AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形.(2)如果四边形AECF是菱形,求这个菱形的边长.(3)如图2,在(2)的条件下,取AB、CD的中点G、H,连接DG、BH, DG分别交AE、CF于点M、Q, BH分别交AE、CF于点N、P,求点P到BC的距离并直接写出四边形MNPQ的面积。21(6分)如图,在每个小正方形的边长均为的方格纸中,有线段和线段,点、均
7、在小正方形的顶点上.(1)在方格纸中画出以为一边的锐角等腰三角形,点在小正方形的顶点上,且的面积为;(2)在方格纸中画出以为一边的直角三角形,点在小正方形的顶点上,且的面积为5;(3)连接,请直接写出线段的长.22(8分)已知的半径为,点到直线的距离为,且直线与相切,若,分别是方程的两个根,求的值23(8分)如图,在正方形ABCD中,点M、N分别在AB、BC边上,MDN=45(1)如图1,DN交AB的延长线于点F 求证:;(2)如图2,过点M作MPDB于P,过N作NQBD于,若,求对角线BD的长;(3)如图3,若对角线AC交DM,DF分别于点T,E判断DTN的形状并说明理由24(8分)已知关于
8、的方程有两个不相等的实数根(1)求的取值范围;(2)若,求的值25(10分)某区各街道居民积极响应“创文明社区”活动,据了解,某街道居民人口共有7.5万人,街道划分为A,B两个社区,B社区居民人口数量不超过A社区居民人口数量的2倍(1)求A社区居民人口至少有多少万人?(2)街道工作人员调查A,B两个社区居民对“社会主义核心价值观”知晓情况发现:A社区有1.2万人知晓,B社区有1万人知晓,为了提高知晓率,街道工作人员用了两个月的时间加强宣传,A社区的知晓人数平均月增长率为m%,B社区的知晓人数第一个月增长了m%,第二个月增长了2m%,两个月后,街道居民的知晓率达到76%,求m的值26(10分)如
9、图,一次函数的图象与反比例函数的图象相交于、两点,其中点的坐标为,点的坐标为.(1)根据图象,直接写出满足的的取值范围;(2)求这两个函数的表达式;(3)点在线段上,且,求点的坐标.参考答案一、选择题(每小题3分,共30分)1、C【分析】连接OA,OB根据切线的性质定理,切线垂直于过切点的半径,即可求得OAP,OBP的度数,根据四边形的内角和定理即可求的AOB的度数,然后根据圆周角定理即可求解【详解】PA是圆的切线, 同理 根据四边形内角和定理可得: 故选:C.【点睛】考查切线的性质以及圆周角定理,连接圆心与切点是解题的关键.2、D【分析】根据垂径定理求出BD,根据勾股定理求出OD,求出AD,
10、再根据勾股定理求出AB即可【详解】解:AOBC,AO过O,BC8,BDCD4,BDO90,由勾股定理得:OD,ADOAOD538,在RtADB中,由勾股定理得:AB,故选D【点睛】本题考查了垂径定理和勾股定理,能根据垂径定理求出BD长是解此题的关键3、C【解析】根据二次函数的性质,确定抛物线的对称轴及开口方向得出函数的增减性,结合题意确定m值的范围.【详解】解:抛物线的对称轴为直线 ,抛物线开口向下,当 时,y的值随x值的增大而增大,当时,y的值随x值的增大而增大, ,故选:C【点睛】本题考查了二次函数的性质,主要利用了二次函数的增减性,由系数的符号特征得出函数性质是解答此题的关键.4、B【解
11、析】根据二次函数图象和性质可以判断各个小题中的结论是否成立,从而可以解答本题根据图像分析,抛物线向上开口,a1;抛物线与y轴交点在y轴的负半轴,c1;坐标轴在右边,根据左同右异,可知b与a异号,b1,根据这些信息再结合函数性质判断即可.【详解】解:由图象可得,a1,c1,ac1,故正确,方程当y=1时,代入y=ax2+bx+c,求得根是x1=-1,x2=3,故正确,当x=1时,y=a+b+c1,故正确,该抛物线的对称轴是直线x=当x1时,y随x的增大而增大,故错误,则2a=-b,那么2a+b=1,故错误,抛物线与x轴两个交点,b2-4ac1,故正确,故正确的为. 选:B【点睛】本题考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答5、B【分析】利用圆周角定理、一元二次方程根的判别式及二次函数的增减性分别判断正误后即可得到正确的选项【详解】解:等弧所对的圆心角也相等,正确,是真命题;90的圆周角所对的弦是直径,正确,是真命题;关于x的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 银行抵押贷款协议书
- 项目整体转租协议书
- 兼职合伙人合同协议书
- 餐饮股权激励协议书
- 餐厅项目转包协议书
- 艺人宣传策划协议书
- 装修公司承包协议书
- 办公楼玻璃清洁协议书
- 管道护理查房
- 冷饮柜出租合同协议书
- 股权质押贷款合同案例
- 美容卫生管理制度打印版
- 2024年杭州良渚文化城集团有限公司招聘笔试冲刺题(带答案解析)
- 《畜禽生产技术》复习试题及答案
- (正式版)SHT 3075-2024 石油化工钢制压力容器材料选用规范
- MOOC 航空航天材料概论-南京航空航天大学 中国大学慕课答案
- (2024年)幼儿园营养膳食
- 慕思广告策略与实施报告完整版
- 第7章 显微镜下常见矿物特征
- 尿毒症心衰的护理查房课件
- 人工智能在医疗领域的应用
评论
0/150
提交评论