版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷
2、和答题卡一并交回。一、选择题(每题4分,共48分)1下列事件是必然事件的是( )A半径为2的圆的周长是2B三角形的外角和等于360C男生的身高一定比女生高D同旁内角互补2如图,是的弦,半径于点,且的长是( )ABCD3如果(m+2)x|m|+mx10是关于x的一元二次方程,那么m的值为()A2或2B2C2D04如图,钓鱼竿AC长6m,露在水面上的鱼线BC长m,某钓者想看看鱼钓上的情况,把鱼竿AC转动到AC的位置,此时露在水面上的鱼线BC为m,则鱼竿转过的角度是()A60B45C15D905若,则的值为( )ABCD6如图所示,的顶点是正方形网格的格点,则的值为()ABCD7如图,二次函数的图象
3、过点,下列说法:;若是抛物线上的两点,则;当时,其中正确的个数为( )A4B3C2D18将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()Ay=(x+2)25By=(x+2)2+5Cy=(x2)25Dy=(x2)2+59如图,在中,点在边上,连接,点在线段上,且交于点,且交于点,则下列结论错误的是( )ABCD10如图,已知AB是O的直径,AD切O于点A,点C是的中点,则下列结论:OCAE;ECBC;DAEABE;ACOE,其中正确的有()A1个B2个C3个D4个11如图,为线段上一动点(点不与点、重合),在线段的同侧分别作等边和等边,连结、,交点为若,求动
4、点运动路径的长为( )ABCD12如图,已知AC是O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交O于点E,若AOB=3ADB,则()ADE=EBBDE=EBCDE=DODDE=OB二、填空题(每题4分,共24分)13如图,菱形ABCD中,B120,AB2,将图中的菱形ABCD绕点A沿逆时针方向旋转,得菱形ABCD1,若BAD110,在旋转的过程中,点C经过的路线长为_14如图,已知O的半径是2,点A、B、C在O上,若四边形OABC为菱形,则图中阴影部分面积为_15如图,直线AB与CD相交于点O,OA=4cm,AOC=30,且点A也在半径为1cm的P上,点P在直线AB
5、上,P以1cm/s的速度从点A出发向点B的方向运动_s时与直线CD相切16如图,在ABCD中,AB为O的直径,O与DC相切于点E,与AD相交于点F,已知AB=12,C=60,则 的长为 17如图,在平面直角坐标系中,菱形OBCD的边OB在x轴正半轴上,反比例函数y(x0)的图象经过该菱形对角线的交点A,且与边BC交于点F若点D的坐标为(3,4),则点F的坐标是_18如图,在平面直角坐标系中,OB在x轴上,ABO90,点A的坐标为(2,4),将AOB绕点A逆时针旋转90,点O的对应点C恰好落在反比例函数y的图象上,则k的值为_三、解答题(共78分)19(8分)为给邓小平诞辰周年献礼,广安市政府对
6、城市建设进行了整改,如图所示,已知斜坡长60米,坡角(即)为,现计划在斜坡中点处挖去部分斜坡,修建一个平行于水平线的休闲平台和一条新的斜坡(下面两个小题结果都保留根号).(1)若修建的斜坡BE的坡比为:1,求休闲平台的长是多少米?(2)一座建筑物距离点米远(即米),小亮在点测得建筑物顶部的仰角(即)为.点、,在同一个平面内,点、在同一条直线上,且,问建筑物高为多少米?20(8分)已知关于x的一元二次方程:x2(t1)x+t2=1求证:对于任意实数t,方程都有实数根;21(8分)如图,AB是O的直径,BD是O的弦,延长BD到点C,使DCBD,连接AC,E为AC上一点,直线ED与AB延长线交于点F
7、,若CDEDAC,AC1(1)求O半径;(2)求证:DE为O的切线;22(10分)如图,在ABC中,AB=AC,D为BC边的中点,过点D作DEAB,DFAC,垂足分别为E,F(1)求证:BEDCFD;(2)若A=60,BE=2,求ABC的周长23(10分)已知,抛物线yax2+ax+b(a0)与直线y2x+m有一个公共点M(1,0),且ab(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;(3)a1时,直线y2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t0),若线段G
8、H与抛物线有两个不同的公共点,试求t的取值范围24(10分)如图,抛物线yax2+2x+c经过点A(0,3),B(1,0),请解答下列问题:(1)求抛物线的解析式;(2)抛物线的顶点为点D,对称轴与x轴交于点E,连接BD,求BD的长;(3)点F在抛物线上运动,是否存在点F,使BFC的面积为6,如果存在,求出点F的坐标;如果不存在,请说明理由25(12分)如图,中,是的中点,于.(1)求证:;(2)当时,求的度数.26如图是某货站传送货物的平面示意图为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由改为,已知原传送带长为米(1)求新传送带的长度;(2)如果需要在货物着地点的左侧留
9、出2米的通道,试判断距离点5米的货物是否需要挪走,并说明理由(参考数据:,)参考答案一、选择题(每题4分,共48分)1、B【分析】根据必然事件的概念(必然事件指在一定条件下一定发生的事件),可判断出正确答案【详解】解:A、半径为2的圆的周长是4,不是必然事件;B、三角形的外角和等于360,是必然事件;C、男生的身高一定比女生高,不是必然事件;D、同旁内角互补,不是必然事件;故选B.【点睛】本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生
10、也可能不发生的事件2、C【分析】利用勾股定理和垂径定理即可求解【详解】,AD=4cm在RtAOD中,OA2OD2AD2,25(5DC)216,DC2cm故选:C【点睛】主要考查了垂径定理的运用垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧解此类题一般要把半径、弦心距、弦的一半构建在一个直角三角形里,运用勾股定理求解3、B【分析】根据一元二次方程的定义可得:|m|=1,且m+10,再解即可【详解】解:由题意得:|m|=1,且m+10,解得:m=1故选:B【点睛】此题主要考查了一元二次方程的定义,关键是掌握“未知数的最高次数是1”;“二次项的系数不等于0”4、C【解析】试题解析:s
11、inCAB=CAB=45,CAB=60CAC=60-45=15,鱼竿转过的角度是15故选C考点:解直角三角形的应用5、B【分析】根据算术平方根、绝对值的非负性分别解得的值,再计算即可【详解】故选:B【点睛】本题考查二次根式、绝对值的非负性、幂的运算等知识,是重要考点,难度较易,掌握相关知识是解题关键6、B【分析】连接CD,求出CDAB,根据勾股定理求出AC,在RtADC中,根据锐角三角函数定义求出即可【详解】解:连接CD(如图所示),设小正方形的边长为,BD=CD=,DBC=DCB=45,在中,则故选B【点睛】本题考查了勾股定理,锐角三角形函数的定义,等腰三角形的性质,直角三角形的判定的应用,
12、关键是构造直角三角形7、B【分析】根据二次函数的性质对各项进行判断即可【详解】A.函数图象过点,对称轴为,可得,正确;B.,当,正确;C.根据二次函数的对称性,的纵坐标等于的纵坐标,所以,错误;D.由图象可得,当时,正确;故答案为:B【点睛】本题考查了二次函数的问题,掌握二次函数的图象以及性质是解题的关键8、A【分析】直接根据“上加下减,左加右减”的原则进行解答即可【详解】抛物线y=x2的顶点坐标为(0,0),先向左平移2个单位再向下平移1个单位后的抛物线的顶点坐标为(2,1),所以,平移后的抛物线的解析式为y=(x+2)21故选A【点睛】本题考查了二次函数的图象与几何变换,熟知函数图象平移的
13、法则是解答本题的关键9、C【分析】根据平行线截得的线段对应成比例以及相似三角形的性质定理,逐一判断选项,即可得到答案【详解】,A正确,B正确,DFGDCA, AEGABD,C错误,D正确,故选C【点睛】本题主要考查平行线截线段定理以及相似三角形的性质定理,掌握平行线截得的线段对应成比例是解题的关键10、C【分析】由C为弧EB中点,利用垂径定理的逆定理得到OC垂直于BE,根据等弧对等弦得到BC=EC,再由AB为直角,利用圆周角定理得到AE垂直于BE,进而得到一对直角相等,利用同位角相等两直线平行得到OC与AE平行,由AD为圆的切线,利用切线的性质得到AB与DA垂直,利用同角的余角相等得到DAE=
14、ABE,根据E不一定为弧AC中点,可得出AC与OE不一定垂直,即可确定出结论成立的序号【详解】解:C为的中点,即,OCBE,BCEC,选项正确;设AE与CO交于F,BFO90,AB为圆O的直径,AEBE,即BEA90,BFOBEA,OCAE,选项正确;AD为圆的切线,DAB90,即DAE+EAB90,EAB+ABE90,DAEABE,选项正确;点E不一定为中点,故E不一定是中点,选项错误,则结论成立的是,故选:C【点睛】此题考查了切线的性质,圆周角定理,平行线的判定,以及垂径定理,熟练掌握性质及定理是解本题的关键11、B【分析】根据题意分析得出点Q运动的轨迹是以AB为弦的一段圆弧,当点P运动到
15、AB的中点处时PQ取得最大值,过点P作OPAB,取AQ的中点E作OEAQ交PQ于点O,连接OA,设半径长为R,则根据勾股定列出方程求出R的值,再根据弧长计算公式l=求出l值即可.【详解】解:依题意可知,点Q运动的轨迹是以AB为弦的一段圆弧,当点P运动到AB的中点处时PQ取得最大值,如图所示,连接PQ,取AQ的中点E作OEAQ交直线PQ于点O,连接OA,OB.P是AB的中点,PA=PB=AB=6=3.和是等边三角形,AP=PC,PB=PD,APC=BPD=60,AP=PD,APD=120.PAD=ADP=30,同理可证:PBQ=BCP=30,PAD=PBQ.AP=PB,PQAB.tanPAQ=
16、PQ= .在RtAOP中, 即解得:OA= .sinAOP= AOP=60.AOB=120.l= .故答案选B.【点睛】本题考查了弧长计算公式,等边三角形的性质,垂直平分线的性质,等腰三角形的性质,勾股定理,三角函数等知识,综合性较强,明确点Q的运动轨迹是一段弧是解题的关键.12、D【解析】解:连接EO.B=OEB,OEB=D+DOE,AOB=3D,B+D=3D,D+DOE+D=3D,DOE=D,ED=EO=OB,故选D.二、填空题(每题4分,共24分)13、【分析】连接AC、AC,作BMAC于M,由菱形的性质得出BAC=DAC=30,由含30角的直角三角形的性质得出BM=AB=1,由勾股定理
17、求出AM=BM=,得出AC=2AM=2,求出CAC=50,再由弧长公式即可得出结果【详解】解:连接AC、AC,作BMAC于M,如图所示:四边形ABCD是菱形,B=120,BAC=DAC=30,BM=AB=1,AM=BM=,AC=2AM=2,BAD=110,CAC=110-30-30=50,点C经过的路线长=故答案为:【点睛】本题考查了菱形的性质、含30角的直角三角形的性质、等腰三角形的性质、勾股定理、弧长公式;熟练掌握菱形的性质,由勾股定理和等腰三角形的性质求出AC的长是解决问题的关键14、【分析】连接OB和AC交于点D,根据菱形及直角三角形的性质先求出AC的长及AOC的度数,然后求出菱形AB
18、CO及扇形AOC的面积,则由S扇形AOC-S菱形ABCO可得答案【详解】连接OB和AC交于点D,如图所示:圆的半径为2,OBOAOC2,又四边形OABC是菱形,OBAC,OD OB1,在RtCOD中利用勾股定理可知: COD60,AOC2COD120,S菱形ABCOS扇形AOC则图中阴影部分面积为S扇形AOCS菱形ABCO故答案为【点睛】本题考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积和扇形的面积,有一定的难度15、1或5【分析】分类讨论:当点P在射线OA上时,过点P作PEAB于点E,根据切线的性质得到PE=1cm,利用30度角所对的直角边等于斜边一半的性质的OP=2PE=2c
19、m,求出P移动的距离为4-2-1=1cm,由此得到P运动时间;当点P在射线OB上时,过点P作PFAB于点F,同样方法求出运动时间.【详解】当点P在射线OA上时,如图,过点P作PEAB于点E,则PE=1cm,AOC=30,OP=2PE=2cm,P移动的距离为4-2-1=1cm,运动时间为s;当点P在射线OB上时,如图,过点P作PFAB于点F,则PF=1cm,AOC=30,OP=2PF=2cm,P移动的距离为4+2-1=5cm,运动时间为s;故答案为:1或5.【点睛】此题考查动圆问题,圆的切线的性质定理,含30度角的直角边等于斜边一半的性质,解题中注意运用分类讨论的思想解答问题.16、【详解】解:
20、如图连接OE、OFCD是O的切线,OECD,OED=90,四边形ABCD是平行四边形,C=60,A=C=60,D=120,OA=OF,A=OFA=60,DFO=120,EOF=360DDFODEO=30,的长=故答案为考点:切线的性质;平行四边形的性质;弧长的计算17、(6,)【分析】过点D作DMOB,垂足为M,先根据勾股定理求出菱形的边长,即可得到点B、D的坐标,进而可根据菱形的性质求得点A的坐标,进一步即可求出反比例函数的解析式,再利用待定系数法求出直线BC的解析式,然后解由直线BC和反比例函数的解析式组成的方程组即可求出答案.【详解】解:过点D作DMOB,垂足为M,D(3,4),OM3,
21、DM4,OD5,四边形OBCD是菱形,OBBCCDOD5,B(5,0),C(8,4),A是菱形OBCD的对角线交点,A(4,2),代入y,得:k8,反比例函数的关系式为:y,设直线BC的关系式为ykx+b,将B(5,0),C(8,4)代入得:,解得:k,b,直线BC的关系式为yx,将反比例函数与直线BC联立方程组得:,解得:,(舍去),F(6,),故答案为:(6,)【点睛】本题考查了菱形的性质、勾股定理、待定系数法求函数的解析式以及求两个函数的交点等知识,属于常考题型,正确作出辅助线、熟练掌握上述知识是解题的关键.18、1【解析】根据题意和旋转的性质,可以得到点C的坐标,把点C坐标代入反比例函
22、数y=中,即可求出k的值【详解】OB在x轴上,ABO=90,点A的坐标为(2,4),OB=2,AB=4将AOB绕点A逆时针旋转90,AD=4,CD=2,且AD/x轴点C的坐标为(6,2),点O的对应点C恰好落在反比例函数y=的图象上,k=2,故答案为1【点睛】本题考查反比例函数图象上点的坐标特征、坐标与图形的变化-旋转,解答本题的关键是明确题意,利用数形结合的思想解答三、解答题(共78分)19、(1)m (2)米【解析】分析:(1)由三角函数的定义,即可求得AM与AF的长,又由坡度的定义,即可求得NF的长,继而求得平台MN的长;(2)在RTBMK中,求得BK=MK=50米,从而求得 EM=84
23、米;在RTHEM中, 求得,继而求得米详解:(1)MFBC,AMF=ABC=45,斜坡AB长米,M是AB的中点,AM=(米),AF=MF=AMcosAMF=(米),在中,斜坡AN的坡比为1,MN=MF-NF=50-=. (2)在RTBMK中,BM=,BK=MK=50(米), EM=BG+BK=34+50=84(米)在RTHEM中,HME=30,(米)答:休闲平台DE的长是米;建筑物GH高为米.点睛:本题考查了坡度坡角的问题以及俯角仰角的问题解题的关键是根据题意构造直角三角形,将实际问题转化为解直角三角形的问题;掌握数形结合思想与方程思想在题中的运用.20、见解析【分析】根据方程的系数结合根的判
24、别式,可得出=(t-3)21,由此可证出:对于任意实数t,方程都有实数根【详解】证明:=-(t1)241(t2)=t26t+9=(t3)2,对于任意实数t,都有(t3)21,方程都有实数根【点睛】本题考查了根的判别式,解题的关键是:牢记“当1时,方程有实数根” 21、(1)半径为6;(2)见解析【分析】(1)根据直径所对的圆周角是直角,证明ADBC,结合DCBD可得AB=AC=1,则半径可求出;(2)连接OD,先证得AED90,根据三角形中位线定理得出ODAC,由平行线的性质,得出ODDE,则结论得证【详解】解:(1)AB为O的直径,ADB90,ADBC,又BDCD,ABAC1,O半径为6;(
25、2)证明:连接OD, CDEDAC,CDE+ADEDAC+ADE,AEDADB,由(1)知ADB90,AED90,DCBD,OAOB,ODACODFAED90,半径ODEFDE为O的切线【点睛】本题考查切线的判定,圆周角定理,熟练掌握切线的判定方法是解题的关键22、(1)证明见解析;(2)1【解析】试题分析:(1)根据DEAB,DFAC,AB=AC,求证B=C再利用D是BC的中点,求证BEDCFD即可得出结论(2)根据AB=AC,A=60,得出ABC为等边三角形然后求出BDE=30,再根据题目中给出的已知条件即可算出ABC的周长试题解析:(1)DEAB,DFAC,BED=CFD=90,AB=A
26、C,B=C(等边对等角)D是BC的中点,BD=CD在BED和CFD中,BEDCFD(AAS)DE=DF(2)AB=AC,A=60,ABC为等边三角形B=60,BED=90,BDE=30,BE=BD,BE=2,BD=4,BC=2BD=8,ABC的周长为1考点:全等三角形的判定与性质23、(1)b=2a,顶点D的坐标为(,);(2);(3) 2t【解析】(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;(2)把点M(1,0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根
27、据ab,判断a0,确定D、M、N的位置,画图1,根据面积和可得DMN的面积即可;(3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围【详解】解:(1)抛物线y=ax2+ax+b有一个公共点M(1,0),a+a+b=0,即b=-2a,y=ax2+ax+b=ax2+ax-2a=a(x+)2-,抛物线顶点D的坐标为(-,-);(2)直线y=2x+m经过点M(1,0),0=21+m,解得m=-2,y=2x-2,则,得ax2+(a-2)x-2a+2=0,(
28、x-1)(ax+2a-2)=0,解得x=1或x=-2,N点坐标为(-2,-6),ab,即a-2a,a0,如图1,设抛物线对称轴交直线于点E,抛物线对称轴为,E(-,-3),M(1,0),N(-2,-6),设DMN的面积为S,S=SDEN+SDEM=|( -2)-1|-(-3)|=a,(3)当a=-1时,抛物线的解析式为:y=-x2-x+2=-(x+)2+,由,-x2-x+2=-2x,解得:x1=2,x2=-1,G(-1,2),点G、H关于原点对称,H(1,-2),设直线GH平移后的解析式为:y=-2x+t,-x2-x+2=-2x+t,x2-x-2+t=0,=1-4(t-2)=0,t=,当点H平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=-2x+t,t=2,当线段GH与抛物线有两个不同的公共点,t的取值范围是2t【点睛】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大24、(1)yx2+2x+3;(2)2;(3)存在,理由见解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版体育赛事运营权收购协议书范本(含赞助商权益)3篇
- 农业科技项目2025年度市场开发与品牌建设合同3篇
- 2025版二零二五民办学校教师职业发展规划聘用协议4篇
- 2025年度美容美发行业技师劳动合同续签条件合同4篇
- 2025年度美甲店品牌形象保护与侵权纠纷处理合同4篇
- 二零二五年度车牌租赁经营合作协议范本3篇
- 2025年高科技研发中心投资合作框架协议3篇
- 2025年度绿化工程进度跟踪与管理合同4篇
- 2025年摊位电子支付系统合作协议3篇
- 2025年智能城市基础设施建设土地买卖合同范例3篇
- 2024年住院医师规范化培训师资培训理论考试试题
- 期末综合测试卷(试题)-2024-2025学年五年级上册数学人教版
- 2024年广东省公务员录用考试《行测》试题及答案解析
- 结构力学本构模型:断裂力学模型:断裂力学实验技术教程
- 黑色素的合成与美白产品的研究进展
- 金蓉颗粒-临床用药解读
- 法治副校长专题培训课件
- 《幼儿园健康》课件精1
- 汽车、电动车电池火灾应对
- 中医药适宜培训-刮痧疗法教学课件
- 免疫组化he染色fishish
评论
0/150
提交评论