版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1将抛物线y(x3)22向左平移( )个单位后经过点A(2,2)A1B2C3D42如图,四边形与四边形是位似图形,则位似中心是( )A点B点C点D点3若点,
2、在反比例函数的图像上,则的大小关系是( )ABCD4下列图案中,既是轴对称图形又是中心对称图形的是()ABCD5若点,都在反比例函数的图象上,则,的大小关系是( )ABCD6如果(,均为非零向量),那么下列结论错误的是()A/B-2=0C=D7下列一元二次方程中,两实数根之和为3的是()ABCD8下列方程中,是关于的一元二次方程的是( )ABCD9某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码的概率是( )A110B19C13D1210二次函数y2x24x
3、6的最小值是()A8B2C0D6二、填空题(每小题3分,共24分)11某校有一块长方形的空地,其中长米,宽米,准备在这块空地上修3条小路,路宽都一样为米,并且有一条路与平行,2条小路与平行,其余地方植上草坪,所种植的草坪面积为110米根据题意可列方程_12如图,一架长为米的梯子斜靠在一竖直的墙上,这时测得,如果梯子的底端外移到,则梯子顶端下移到,这时又测得,那么的长度约为_米(,)13如图,在平面直角坐标系中,原点O是等边三角形ABC的重心,若点A的坐标是(0,3),将ABC绕点O逆时针旋转,每秒旋转60,则第2018秒时,点A的坐标为 14如图,正方形ABCD的边长为,E,F分别是AB,BC
4、的中点,AF与DE,DB分别交于点M,N,则DMN的面积= 15如图,A是反比例函数图象上的一点,点B、D在轴正半轴上,是关于点D的位似图形,且与的位似比是1:3,的面积为1,则的值为_16如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形若正三角形边长为6cm,则该莱洛三角形的周长为_cm17如图,在O内有折线DABC,点B,C在O上,DA过圆心O,其中OA8,AB12,AB60,则BC_18如图,铁道口的栏杆短臂长1m,长臂长16m当短臂端点下降0.5m时,长臂端点升高_三、解答题(共66分)19(10分)如图,在中,正方形的顶点分别在边、上,在边上. (
5、1)点到的距离为_. (2)求的长.20(6分)在ABC中,AB=AC,BAC=120,以CA为边在ACB的另一侧作ACM=ACB,点D为射线BC上任意一点,在射线CM上截取CE=BD,连接AD、DE、AE(1)如图1,当点D落在线段BC的延长线上时,求ADE的度数;(2)如图2,当点D落在线段BC(不含边界)上时,AC与DE交于点F,试问ADE的度数是否发生变化?如果不变化,请给出理由;如果变化了,请求出ADE的度数;(3)在(2)的条件下,若AB=6,求CF的最大值21(6分)如图,在ABC中,A30,C90,AB12,四边形EFPQ是矩形,点P与点C重合,点Q、E、F分别在BC、AB、A
6、C上(点E与点A、点B均不重合)(1)当AE8时,求EF的长;(2)设AEx,矩形EFPQ的面积为y求y与x的函数关系式;当x为何值时,y有最大值,最大值是多少?(3)当矩形EFPQ的面积最大时,将矩形EFPQ以每秒1个单位的速度沿射线CB匀速向右运动(当点P到达点B时停止运动),设运动时间为t秒,矩形EFPQ与ABC重叠部分的面积为S,求S与t的函数关系式,并写出t的取值范围22(8分)如图,直线与轴交于点,与反比例函数第一象限内的图象交于点,连接,若(1)求直线的表达式和反比例函数的表达式;(2)若直线与轴的交点为,求的面积23(8分)如图,已知抛物线与轴交于、两点,与轴交于点(1)求抛物
7、线的解析式;(2)点是第一象限内抛物线上的一个动点(与点、不重合),过点作轴于点,交直线于点,连接、设点的横坐标为,的面积为求关于的函数解析式及自变量的取值范围,并求出的最大值;(3)已知为抛物线对称轴上一动点,若是以为直角边的直角三角形,请直接写出点的坐标24(8分)已知关于x的方程.(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.25(10分)已知,如图,在ABC中,C=90,点D是AB外一点,过点D分别作边AB、BC的垂线,垂足分别为点E、F,DF与AB交于点H,延长DE交BC于点G求证:DFGBCA26(10分)如图,在
8、正方形ABCD中,点M、N分别在AB、BC边上,MDN=45(1)如图1,DN交AB的延长线于点F 求证:;(2)如图2,过点M作MPDB于P,过N作NQBD于,若,求对角线BD的长;(3)如图3,若对角线AC交DM,DF分别于点T,E判断DTN的形状并说明理由参考答案一、选择题(每小题3分,共30分)1、C【分析】直接利用二次函数平移规律结合二次函数图像上点的性质进而得出答案【详解】解:将抛物线向左平移后经过点设平移后的解析式为或(不合题意舍去)将抛物线向左平移个单位后经过点故选:C【点睛】本题主要考查的是二次函数图象的平移,根据平移规律“左加右减,上加下减”利用顶点的变化确定图形的变化是解
9、题的关键2、B【分析】根据位似图形的定义: 如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行或在一条直线上,那么这两个图形叫做位似图形,这个点叫做位似中心,判断即可.【详解】解:由图可知,对应边AG与CE的延长线交于点B,点B为位似中心故选B.【点睛】此题考查的是找位似图形的位似中心,掌握位似图形的定义是解决此题的关键.3、C【解析】根据点A、B、C分别在反比例函数上,可解得、的值,然后通过比较大小即可解答.【详解】解:将A、B、C的横坐标代入反比函数上,得:y16,y23,y32,所以,;故选C.【点睛】本题考查了反比例函数的计算,熟练掌握是解题的关键.4、B【解析】
10、根据轴对称图形与中心对称图形的概念求解【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误故选B【点睛】考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合5、B【分析】将A、B、C三点坐标分别代入反比例函数的解析式,求出的值比较其大小即可【详解】点,都在反比例函数的图象上,分别把x=-3、x=-2、x=1代入得,故选B【点睛】本题考查了反比例函数的图
11、像和性质,熟练掌握相关的知识点是解题的关键6、B【解析】试题解析:向量最后的差应该还是向量. 故错误.故选B.7、D【分析】根据根与系数的关系,要使一元二次方程中,两实数根之和为3,必有0且,分别计算即可判断.【详解】解:A、a=1,b=3,c=-3,;B、a=2,b=-3,c=-3,;C、a=1,b=-3,c=3,原方程无解;D、a=1,b=-3,c=-3,.故选:D.【点睛】本题考查根与系数关系,根的判别式.在本题中一定要注意需先用根的判别式判定根的情况,若方程有根方可用根与系数关系.8、C【解析】只有一个未知数且未知数的最高次数为2的整式方程为一元二次方程.【详解】解:A选项,缺少a0条
12、件,不是一元二次方程;B选项,分母上有未知数,是分式方程,不是一元二次方程;C选项,经整理后得x2+x=0,是关于x的一元二次方程;D选项,经整理后是一元一次方程,不是一元二次方程;故选择C.【点睛】本题考查了一元二次方程的定义.9、A【解析】试题分析:根据题意可知总共有10种等可能的结果,一次就能打开该密码的结果只有1种,所以P(一次就能打该密码),故答案选A.考点:概率.10、A【分析】将函数的解析式化成顶点式,再根据二次函数的图象与性质即可得【详解】因此,二次函数的图象特点为:开口向上,当时,y随x的增大而减小;当时,y随x的增大而增大则当时,二次函数取得最小值,最小值为故选:A【点睛】
13、本题考查了二次函数的图象与性质,熟记函数的图象特征与性质是解题关键二、填空题(每小题3分,共24分)11、【分析】根据题意算出草坪的长和宽,根据长方形的面积公式列式即可【详解】长方形长米,宽米,路宽为米,草坪的长为,宽为,草坪的面积为故答案为【点睛】本题主要考查了一元二次方程的应用,根据题意准确列式是解题的关键12、【分析】直接利用锐角三角函数关系得出,的长,进而得出答案【详解】由题意可得:,解得:,解得:,则,答:的长度约为米故答案为【点睛】此题主要考查了解直角三角形的应用,正确得出,的长是解题关键13、【分析】ABC绕点O逆时针旋转一周需6秒,而20186336+2,所以第2018秒时,点
14、A旋转到点A,AOA120,OAOA3,作AHx轴于H,然后通过解直角三角形求出AH和OH即可得到A点的坐标【详解】解:360606,20186336+2,第2018秒时,点A旋转到点B,如图,AOA120,OAOA3,作AHx轴于H,AOH30,AHOA,OHAH,A(,)故答案为(,)【点睛】考核知识点:解直角三角形.结合旋转和解直角三角形知识解决问题是关键.14、1【分析】首先连接DF,由四边形ABCD是正方形,可得BFNDAN,又由E,F分别是AB,BC的中点,可得=2,ADEBAF(SAS),然后根据相似三角形的性质与勾股定理,可求得AN,MN的长,即可得MN:AF的值,再利用同高三
15、角形的面积关系,求得DMN的面积【详解】连接DF,四边形ABCD是正方形,ADBC,AD=BC=,BFNDAN,F是BC的中点,AN=2NF,在RtABF中,E,F分别是AB,BC的中点,AD=AB=BC,DAE=ABF=90,在ADE与BAF中,ADEBAF(SAS),AED=AFB,AME=110-BAF-AED=110-BAF-AFB=90,又,故答案为:115、8【分析】根据ABD是COD关于点D的位似图形,且ABD与COD的位似比是1:3,得出,进而得出假设BD=x,AE=4x,D0=3x,AB=y,根据ABD的面积为1,求出xy=2即可得出答案【详解】过A作AEx轴,ABD是COD
16、关于点D的位似图形,且ABD与COD的位似是1:3, ,OE=AB,设BD=x,AB=yDO=3x,AE=4x,C0=3y,ABD的面积为1,xy=1,xy=2,ABAE=4xy=8,故答案为:8.【点睛】此题考查位似变换,反比例函数系数k的几何意义,待定系数法求反比例函数解析式,解题关键在于作辅助线.16、6【分析】直接利用弧长公式计算即可.【详解】利用弧长公式计算:该莱洛三角形的周长(cm)故答案为6【点睛】本题考查了弧长公式,熟练掌握弧长公式是解题关键.17、1【分析】作OEBC于E,连接OB,根据A、B的度数易证得ABD是等边三角形,由此可求出OD、BD的长,设垂足为E,在RtODE中
17、,根据OD的长及ODE的度数易求得DE的长,进而可求出BE的长,由垂径定理知BC=2BE即可得出答案【详解】作OEBC于E,连接OBAB60,ADB60,ADB为等边三角形,BDADAB12,OA8,OD4,又ADB60,DEOD2, BE12210,由垂径定理得BC=2BE=1故答案为:1【点睛】本题考查了圆中的弦长计算,熟练掌握垂径定理,作出辅助线构造直角三角形是解题的关键18、8m【分析】由题意证ABOCDO,可得,即,解之可得【详解】如图,由题意知BAO=C=90,AOB=COD,ABOCDO,即,解得:CD=8,故答案为:8m【点睛】本题主要考查相似三角形的应用,熟练掌握相似三角形的
18、判定与性质是解题的关键三、解答题(共66分)19、(1);(2)【分析】(1)根据勾股定理即可得出BC=8,再运用等面积法,即可得出答案.(2)根据正方形的性质,即可得出,再根据相似三角形的判定可得出,进而得出,设x得出方程进行求解即可.【详解】解:(1)BC=8 = =24 点C到AB的距离是. (2)如图,过点作于点,交于点,四边形是正方形,. 设,则,解得的长为.【点睛】本题主要考察了勾股定理和相似三角形,正确找出三角形的线段关系和灵活运用等面积法是解题的关键.20、(1)ADE=30;(2)ADE=30,理由见解析;(3)【分析】(1)利用SAS定理证明ABDACE,根据全等三角形的性
19、质得到AD=AE,CAE=BAD,根据等腰三角形的性质、三角形内角和定理计算即可证明;(2)同(1)的证明方法相同;(3)证明ADFACD,根据相似三角形的性质得到,求出AD的最小值,得到AF的最小值,求出CF的最大值【详解】解:(1)ADE=30理由如下:AB=AC,BAC=120,ABC=ACB=30,ACM=ACB,ACM=ABC,在ABD和ACE中,ABDACE,AD=AE,CAE=BAD,DAE=BAC=120,ADE=30;(2)(1)中的结论成立,证明:BAC=120,AB=AC,B=ACB=30ACM=ACB,B=ACM=30在ABD和ACE中,ABDACE,AD=AE,BAD
20、=CAE,CAE+DAC=BAD+DAC=BAC=120即DAE=120,AD=AE,ADE=AED=30;(3)AB=AC,AB=6,AC=6,ADE=ACB=30且DAF=CAD,ADFACD,AD2=AFAC,AD2=6AF,AF=,当AD最短时,AF最短、CF最长,易得当ADBC时,AF最短、CF最长,此时AD=AB=3,AF最短=,CF最长=ACAF最短=6=【点睛】本题属于三角形综合题,考查了等腰三角形的性质,全等三角形的判定和性质以及相似三角形的判定与性质等知识,解题的关键是正确寻找全等三角形、相似三角形解决问题,属于中考常考题型21、(1)1;(2)y=x2+3x(0 x12)
21、;x=6时,y有最大值为9;(3)S= 【分析】(1)由EFBC,可得,由此即可解决问题;(2)先根据点E为AB上一点得出自变量x的取值范围,根据30度的直角三角形的性质求出EF和AF的长,在在RtACB中,根据三角函数求出AC的长,计算FC的长,利用矩形的面积公式可求得S的函数关系式;把二次函数的关系式配方可以得结论;(3)分两种情形分别求解即可解决问题.【详解】解:(1)在RtABC中,AB=12,A=30,BC=AB=6,AC=BC=6,四边形EFPQ是矩形,EFBC,=,=,EF=1(2)AB=12,AE=x,点E与点A、点B均不重合,0 x12,四边形CDEF是矩形,EFBC,CFE
22、=90,AFE=90,在RtAFE中,A=30,EF=x,AF=cos30AE=x,在RtACB中,AB=12,cos30=,AC=12=6,FC=ACAF=6x,y=FCEF=x(6x)=x2+3x(0 x12);y=x(12x)=(x6)2+9,当x=6时,S有最大值为9;(3)当0t3时,如图1中,重叠部分是五边形MFPQN,S=S矩形EFPQSEMN=9t2=t2+9当3t6时,重叠部分是PBN,S=(6t)2,综上所述,S=【点睛】本题考查二次函数与三角形综合的知识,难度较大,需综合运用所学知识求解.22、(1),;(1)1【分析】(1)先由SAOB=4,求得点B的坐标是(1,4),
23、把点B(1,4)代入反比例函数的解析式为,可得反比例函数的解析式为:;再把A(-1,0)、B(1,4)代入直线AB的解析式为y=ax+b可得直线AB的解析式为y=x+1(1)把x=0代入直线AB的解析式y=x+1得y=1,即OC=1,可得SOCB=OC1=11=1【详解】解:(1)由A(-1,0),得OA=1;点B(1,m)在第一象限内,SAOB=4,OAm=4;m=4;点B的坐标是(1,4);设该反比例函数的解析式为(k0),将点B的坐标代入,得,k=8;反比例函数的解析式为:;设直线AB的解析式为y=ax+b(k0),将点A,B的坐标分别代入,得,解得:;直线的表达式是;(1)在y=x+1
24、中,令x=0,得y=1点C的坐标是(0,1),OC=1;SOCB=OC1=11=1【点睛】本题考查反比例函数和一次函数解析式的确定、图形的面积求法等知识及综合应用知识、解决问题的能力此题有点难度23、(1);(2),当时,有最大值,最大值;(2),【解析】(1)由抛物线与x轴的两个交点坐标可设抛物线的解析式为y=a(x+1)(x-2),将点C(0,2)代入抛物线解析式中即可得出关于a一元一次方程,解方程即可求出a的值,从而得出抛物线的解析式;(2)设直线BC的函数解析式为y=kx+b结合点B、点C的坐标利用待定系数法求出直线BC的函数解析式,再由点D横坐标为m找出点D、点E的坐标,结合两点间的距离公式以及三角形的面积公式求出函数解析式,利用配方法将S关于m的函数关系式进行变形,从而得出结论;(2)先求出对称轴,设M(1,y),然后分分BM为斜边和CM为斜边两种情况求解即可;【详解】解:(1)抛物线与x轴交于A(-1,0)、B(2,0)两点,设抛物线的解析式为y=a(x+1)(x-2),又点C(0,2)在抛物线图象上,2=a(0+1)(0-2),解得:a=-1抛物线解析式为y=-(x+1)(x-2)=-x2+2x+2抛物线解析式为; (2)设直线的函数解析式为,直线过点,解得,设, ,当时,有最大值,最大值;(2),对称轴为直线x=1,设M(1,y),则CM2=1+(y-2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大米专用冰箱产品供应链分析
- 带有时钟的收音机产业链招商引资的调研报告
- 医疗影像技术行业相关项目经营管理报告
- 乐器修理或维护行业营销策略方案
- 美容霜项目营销计划书
- 幼儿园行业经营分析报告
- 不动产出租服务行业营销策略方案
- 含药物的护肤液产品供应链分析
- 矿物绝缘电缆产品供应链分析
- 云计算法务服务行业营销策略方案
- 农田无偿代耕代种合同范本
- 广东星海音乐厅交响乐大厅的声学设计2023
- 血透医师岗位职责
- 商会规章制度完整版
- TD-T 1048-2016 耕作层土壤剥离利用技术规范
- 二年级上册识字1:场景歌评课稿一等奖听课记录教学反思
- 《病原生物与免疫学》课程标准
- 投资项目法律意见书模板-法律意见书模板
- DB63-T 2109-2023 湟水流域水生植物繁育技术规程
- 中药煎药质量评估检查表
- 戴姆勒产品开发质量体系
评论
0/150
提交评论