版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1如图,在O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=2,CD=1,则BE的长是A5B6C7D82用配方法解方程x2-4x+30时,原方程
2、应变形为( )A(x+1)21B(x-1)21C(x+2)21D(x-2)213将抛物线y=(x+1)2+3向右平移2个单位后得到的新抛物线的表达式为()Ay=(x+1)2+1By=(x1)2+3Cy=(x+1)2+5Dy=(x+3)2+34如果点A(5,y1),B(,y2),C(,y3),在双曲线y上(k0),则y1,y2,y3的大小关系是()Ay3y1y2By2y1y3Cy1y2y3Dy1y3y25如图,在正方形ABCD中,H是对角线BD的中点,延长DC至E,使得DE=DB,连接BE,作DFBE交BC于点G,交BE于点F,连接CH、FH,下列结论:(1)HC=HF;(2)DG=2EF;(3
3、)BEDF=2CD2;(4)SBDE=4SDFH;(5)HFDE,正确的个数是( )A5B4C3D26如图,正比例函数y1=k1x和反比例函数的图象交于A(1,2)、B(1,2)两点,若y1y2,则x的取值范围是( )Ax1或x1Bx1或0 x1C1x0或0 x1D1x0或x17如图,公园中一正方形水池中有一喷泉,喷出的水流呈抛物线状,测得喷出口高出水面0.8m,水流在离喷出口的水平距离1.25m处达到最高,密集的水滴在水面上形成了一个半径为3m的圆,考虑到出水口过高影响美观,水滴落水形成的圆半径过大容易造成水滴外溅到池外,现决定通过降低出水口的高度,使落水形成的圆半径为2.75m,则应把出水
4、口的高度调节为高出水面()A0.55米B米C米D0.4米8抛物线y=x2+bx+c过(-2,0),(2,0)两点,那么抛物线对称轴为( )Ax=1By轴Cx= -1Dx=-29如图,在平面直角坐标系中,点在抛物线上运动,过点作轴于点,以为对角线作矩形,连结,则对角线的最小值为( )ABCD10如图,在正方形中,以为边作等边,延长分别交于点,连接与相交于点,给出下列结论: ;其中正确的是( )ABCD二、填空题(每小题3分,共24分)11计算:sin45cos30+3tan60= _.12若反比例函数的图象在每一象限内,y随x的增大而增大,请写出满足条件的一个反比例函数的解折式_13已知函数是反
5、比例函数,则=_14如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作P,当P与直线AB相切时,点P的横坐标是_15如图,正五边形ABCDE内接于O,若O的半径为10,则的长为_16二次函数的部分图像如图所示,要使函数值,则自变量的取值范围是_.17如图,在RtABC中,ACB90,CB4,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将绕点D旋转180后点B与点A恰好重合,则图中阴影部分的面积为_18如图,在网格中,小正方形的边长均为1,点A、B、O都在格点上,则OAB的正弦值是_三、解答题(共66分)19(10分)如图,两个转盘中指针落在每
6、个数字上的机会相等,现同时转动、两个转盘,停止后,指针各指向一个数字小聪和小明利用这两个转盘做游戏:若两数之和为负数,则小聪胜;否则,小明胜你认为这个游戏公平吗?如果不公平,对谁更有利?请你利用树状图或列表法说明理由20(6分)如图,在RtABC中,ACB90,ACBC4cm,点P从点A出发以lcm/s的速度沿折线ACCB运动,过点P作PQAB于点Q,当点P不与点A、B重合时,以线段PQ为边向右作正方形PQRS,设正方形PQRS与ABC的重叠部分面积为S,点P的运动时间为t(s)(1)用含t的代数式表示CP的长度;(2)当点S落在BC边上时,求t的值;(3)当正方形PQRS与ABC的重叠部分不
7、是五边形时,求S与t之间的函数关系式;(4)连结CS,当直线CS分ABC两部分的面积比为1:2时,直接写出t的值21(6分)如图,是的平分线,点在上,以为直径的交于点,过点作的垂线,垂足为点,交于点(1)求证:直线是的切线;(2)若的半径为,求的长22(8分)不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,求下列事件的概率(1)两次都摸到红球;(2)第一次摸到红球,第二次摸到绿球23(8分)某商店经营家居收纳盒,已知成批购进时的单价是20元调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每个收
8、纳盒售价不能高于40元设每个收纳盒的销售单价上涨了元时(为正整数),月销售利润为元(1)求与的函数关系式(2)每个收纳盒的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?24(8分)一艘观光游船从港口A以北偏东60的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37方向,马上以40海里每小时的速度前往救援,(1)求点C到直线AB的距离;(2)求海警船到达事故船C处所需的大约时间(温馨提示:sin530.8,cos530.6)25(10分)
9、如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=0.4m,EF=0.2m,测得边DF离地面的高度AC=1.5m,CD=8m,求树高26(10分)为推进“全国亿万学生阳光体育运动”的实施,组织广大同学开展健康向上的第二课堂活动我市某中学准备组建球类社团(足球、篮球、羽毛球、乒乓球)、舞蹈社团、健美操社团、武术社团,为了解在校学生对这4个社团活动的喜爱情况,该校随机抽取部分初中生进行了“你最喜欢哪个社团”调查,依据相关数据绘制成以下不完整的统计表,请根据图表中的信息解答下列问题:(1)求样
10、本容量及表格中、的值;(2)请补全统计图;(3)被调查的60个喜欢球类同学中有3人最喜欢足球,若该校有3000名学生,请估计该校最喜欢足球的人数参考答案一、选择题(每小题3分,共30分)1、B【分析】根据垂径定理求出AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可【详解】解:半径OC垂直于弦AB,AD=DB= AB= 在RtAOD中,OA2=(OC-CD)2+AD2,即OA2=(OA-1)2+( )2,解得,OA=4OD=OC-CD=3,AO=OE,AD=DB,BE=2OD=6故选B【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键2、D【分析】根据
11、配方时需在方程的左右两边同时加上一次项系数一半的平方解答即可【详解】移项,得 x2-4x=-3,配方,得 x2-2x+4=-3+4,即(x-2)2=1,故选:D.【点睛】本题考查了一元二次方程的解法配方法,熟练掌握配方时需在方程的左右两边同时加上一次项系数一半的平方是解题的关键.3、B【解析】解:将抛物线y=(x+1)2+1向右平移2个单位,新抛物线的表达式为y=(x+12)2+1=(x1)2+1故选B4、A【分析】先根据k0可判断出函数图象所在的象限及其增减性,再由各点横坐标的值即可得出结论【详解】双曲线y上(k0),函数图象的两个分支分别位于二四象限,且在每一象限内,y随x的增大而增大50
12、,0,点A(5,y1),B(,y1)在第二象限,点C(,y3)在第四象限,y3y1y1故选:A【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键5、B【解析】由等腰三角形“三线合一”的性质可得EF=BF,根据H是正方形对角线BD的中点可得CH=DH=BH,即可证明HF是BDE的中位线,可得HF=DE,HF/DE;由BD=DE即可得HC=HF;利用直角三角形两锐角互余的关系可得CBE=CDG,利用ASA可证明BCEDCG,可得DG=BE,可判定DG=2EF,由正方形的性质可得BD2=2CD2,根据CBE=CDG,E是公共角可
13、证明BCEDFE,即可得,即BEDF=DEBC,可对进行判定,根据等底等高的三角形面积相等可对进行判定,综上即可得答案.【详解】BD=DE,DFBE,EF=BF,H是正方形ABCD对角线BD的中点,CH=DH=BH=BD,HF是BDE的中位线,HF=DE=BD=CH,HF/DE,故正确,CBE+E=90,FDE+E=90,CBE=FDE,又CD=BC,DCG=BCE=90,BCEDCG,DG=BE,BE=2EF,DG=2EF,故正确,CBE=FDE,E=E,BCEDFE,即BEDF=DEBC,BD2=CD2+BC2=2CD2DE2=2CD2,DEBC2CD2,BEDF2CD2,故错误,DH=B
14、D,SDFH=SDFB,BF=BE,SDFB=SBDE,SDFH=SBDE,即SBDE=4SDFH,故正确,综上所述:正确的结论有,共4个,故选B.【点睛】本题考查正方形的性质、等腰三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质及三角形中位线的性质,综合性较强,熟练掌握所学性质及定理是解题关键.6、D【解析】反比例函数与一次函数的交点问题根据图象找出直线在双曲线下方的x的取值范围:由图象可得,1x0或x1时,y1y1故选D7、B【分析】如图,以O为原点,建立平面直角坐标系,由题意得到对称轴为x1.25,A(0,0.8),C(3,0),列方程组求得函数解析式,即可得到结论【详解】解
15、:如图,以O为原点,建立平面直角坐标系,由题意得,对称轴为x1.25,A(0,0.8),C(3,0),设解析式为yax2+bx+c,解得:,所以解析式为:yx2+x+,当x2.75时,y,使落水形成的圆半径为2.75m,则应把出水口的高度调节为高出水面08,故选:B【点睛】本题考查了二次函数的实际应用,根据题意建立合适的坐标系,找到点的坐标,用待定系数法解出函数解析式是解题的关键8、B【分析】由二次函数图像与x轴的交点坐标,即可求出抛物线的对称轴【详解】解:抛物线y=ax2+bx+c(a0)与x轴的交点是(-2,0)和(2,0),这条抛物线的对称轴是:x=,即对称轴为y轴;故选:B【点睛】本题
16、考查了抛物线与x轴的交点问题对于求抛物线的对称轴的题目,可以用公式法,也可以将函数解析式化为顶点式求得,或直接利用公式x=求解9、B【分析】根据矩形的性质可知,要求BD的最小值就是求AC的最小值,而AC的长度对应的是A点的纵坐标,然后利用二次函数的性质找到A点纵坐标的最小值即可【详解】四边形ABCD是矩形顶点坐标为 点在抛物线上运动点A纵坐标的最小值为2AC的最小值是2BD的最小值也是2故选:B【点睛】本题主要考查矩形的性质及二次函数的最值,掌握矩形的性质和二次函数的图象和性质是解题的关键10、A【分析】根据等边三角形、正方形的性质求得ABE=30,利用直角三角形中30角的性质即可判断;证得P
17、C=CD,利用三角形内角和定理即可求得PDC,可求得BPD,即可判断;求得FDP=15,PBD=15,即可证明PDEDBE,判断正确;利用相似三角形对应边成比例可判断【详解】BPC是等边三角形,BP=PC=BC,PBC=PCB=BPC=60,在正方形ABCD中,AB=BC=CD,A=ADC=BCD=90ABE=DCF=30,;故正确; PC=CD,PCD=30,PDC=CPD =75,BPD=BPC+ CPD =60+75=135,故正确;PDC=75,FDP=ADC -PDC=90- 75=15,DBA=45,PBD=DBA -ABE =45-30=15,EDP=EBD,DEP=DEP,PD
18、EDBE,故正确;PDEDBE,即,故正确; 综上:都是正确的故选:A【点睛】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理二、填空题(每小题3分,共24分)11、【分析】先求出各个特殊角度的三角函数值,然后计算即可【详解】原式= 故答案为【点睛】本题考查特殊角度的三角函数值,熟记特殊角度的三角函数值是解题的关键。12、【分析】根据反比例函数的性质:当k0时函数图像的每一支上,y随x的增大而减少;当k0时,函数图像的每一支上,y随x的增大而增大,因此符合条件的反比例函数满足k0即可【详解】因为反比例函数的图象在每一象限内,y随x的增大而增
19、大,所以k0故答案为:【点睛】本题考查的是反比例函数的性质,掌握反比例函数的增减性是关键13、1【分析】根据反比例函数的定义可得|m|-2=-1,m+10,求出m的值即可得答案【详解】函数是反比例函数,|m|-2=-1,m+10,解得:m=1故答案为:1【点睛】考查反比例函数的定义;反比例函数解析式的一般形式y(k0),也可转化为y=kx-1(k0)的形式,特别注意不要忽略k0这个条件14、【分析】根据函数解析式求得A(3 ,1),B(1,-3),得到OA=3,OB=3根据勾股定理得到AB=6,设P与直线AB相切于D,连接PD,则PDAB,PD=2,根据相似三角形的性质即可得到结论【详解】直线
20、交x轴于点A,交y轴于点B,令x=1,得y=-3,令y=1,得x=3,A(3,1),B(1-3),OA=3,OB=3,AB=6,设P与直线AB相切于D,连接PD,则PDAB,PD=1,ADP=AOB=91,PAD=BAO,APDABO, ,AP=2,OP=3-2或OP=3+2,P(3-2,1)或P(3+2,1),故答案为:【点睛】本题考查了切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并进行分类讨论是解题的关键15、2【分析】利用正五边形的性质得出中心角度数,进而利用弧长公式求出即可【详解】解:如图所示:连接OA、OBO为正五边形ABCDE的外接圆,O的半
21、径为10,AOB72,的长为:故答案为:2【点睛】本题主要考查正多边形与圆、弧长公式等知识,得出圆心角度数是解题关键16、【分析】根据,则函数图象在直线的上方,所以找出函数图象在直线的上方的取值范围即可.【详解】根据二次函数的图象可知:对称轴为,已知一个点为,根据抛物线的对称性,则点关于对称性对称的另一个点为,所以时,的取值范围是故答案为:【点睛】本题主要考查了二次函数的性质,主要利用了二次函数的对称性,读懂图象信息,利用对称轴求出点的对称点是解题的关键17、【分析】根据题意,用的面积减去扇形的面积,即为所求.【详解】由题意可得,AB2BC,ACB90,弓形BD与弓形AD完全一样,则A30,B
22、BCD60,CB4,AB8,AC4,阴影部分的面积为:,故答案为:【点睛】本题考查不规则图形面积的求法,属中档题.18、【解析】如图,过点O作OCAB的延长线于点C,则AC=4,OC=2,在RtACO中,AO=,sinOAB=故答案为三、解答题(共66分)19、见解析【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与小力胜、小明胜的情况,继而求得小力胜与小明胜的概率,比较概率大小,即可知这个游戏是否公平【详解】列表得:两个数字之和 转盘A转盘B-102110132-2-3-20-1-1-2-110由两个转盘各转出一数字作积的所有可能情况有12种,每种情况出现的可能性相同,其中两
23、个数字之和为非负数有7个,负数有5个,对小明有利,这个游戏对双方不公平.【点睛】本题考查的是游戏公平性的判断判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平20、(1)当0t4时,CP4t,当4t8时,CPt4;(1);(3)S;(4)或【分析】(1)分两种情形分别求解即可(1)根据PA+PC4,构建方程即可解决问题(3)分两种情形:如图1中,当0t时,重叠部分是正方形PQRS,当4t8时,重叠部分是PQB,分别求解即可(4)设直线CS交AB于E分两种情形:如图41中,当AEAB时,满足条件如图41中,当AEAB时,满足条件分别求解即可解决问题【详解】解:(1)当0t4时,A
24、C4,APt,PCACAP4t;当4t8时,CPt4;(1)如图1中,点S落在BC边上,PAt,AQQP,AQP90,AQPQPSt,CPCS,C90,PCCSt,AP+PCBC4,t+t4,解得t(3)如图1中,当0t时,重叠部分是正方形PQRS,S(t)1t1当4t8时,重叠部分是PQB,S(8t)1综上所述,S(4)设直线CS交AB于E如图41中,当AEAB时,满足条件,PSAE,解得t如图41中,当AEAB时,满足条件同法可得:,解得t,综上所述,满足条件的t的值为或【点睛】此题属于相似形综合题,涉及的知识有:相似三角形的判定与性质,以及正方形的性质,熟练掌握相似三角形的判定与性质是解
25、本题的关键21、(1)证明见解析;(2)1【分析】(1)根据角平分线的定义和同圆的半径相等可得 ,证明 ,可得结论;(2)在 中,设 ,则 , ,证明 ,表示 ,由平行线分线段成比例定理得: ,代入可得结论【详解】解:(1) 连接. AG是PAQ的平分线,半径 直线BC是的切线(2) 连接DE为 的直径,设在中,在与中,在Rt中,AE=12,即在RtODB与RtACB中,即【点睛】本题考查了三角形与圆相交的问题,掌握角平分线的定义、勾股定理、相似三角形的判定以及平行线分线段成比例是解题的关键22、(1);(2)【分析】(1)列表得出所有等可能的情况数,找出两次摸到红球的情况数,即可确定出所求的
26、概率;(2)列表得出所有等可能的情况数,找出第一次摸到红球,第二次摸到绿球的情况数,即可确定出所求的概率【详解】(1)列表如下:红绿红(红,红)(绿,红)绿(红,绿)(绿,绿)所有等可能的情况有4种,所以第一次摸到红球,第二次摸到绿球的概率=;(2)由(1)得第一次摸到红球,第二次摸到绿球只有一种,故其概率为【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=23、(1)(0 x10);(2)32元;(3)售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元【分析】(1)利用利润=每件的利润数量即可表示出与的函数关系式;(2)令第(1)问中的y值为2520,解一元二次方程即可得出x的值;(3)根据二次函数的性质求得最大值即可【详解】(1)根据题意有: 每个收纳盒售价不能高于40元 (2)令 即解得或 此时售价为30+2=32元(3)为正整数当或时,y取最大值,最大值为 此时的售价为30+6=6元
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 招标文件范本编写技巧示例
- 招标文件中的方式招标注意事项说明
- 2024建筑安装工程合同建筑安装工程经营范围
- 时尚品牌的社会责任与公益活动考核试卷
- 煤炭劳动安全合同范例
- 有效旅游合同范例
- 清包工合伙合同模板
- 泥土供货合同范例
- 水稻代加工合同模板
- 现场打包采购合同模板
- 期中测试卷-2024-2025学年统编版语文六年级上册
- 初中语文2024届中考修改病句选择题练习(共15道-附参考答案和解析)
- 中煤科工集团信息技术有限公司招聘笔试题库2024
- 2024年武汉城投集团公开招聘【151人】高频500题难、易错点模拟试题附带答案详解
- 医院消防安全培训课件(完美版)
- 企业级SaaS软件服务合同
- 沈阳音乐学院艺术学院毕业实习管理办法
- 8.2金属的化学性质第1课时金属村趣味运动会九年级化学人教版下册
- 工程竣工验收(消防查验)报告消防专项-全套表格
- 全国青岛版信息技术七年级下册专题一第8课三、《高级统计-数据透视表》教学设计
- 内分泌科品管圈成果汇报提高糖尿病患者健康教育知晓率
评论
0/150
提交评论