2022年浙江省义乌市绣湖中学数学九上期末质量检测试题含解析_第1页
2022年浙江省义乌市绣湖中学数学九上期末质量检测试题含解析_第2页
2022年浙江省义乌市绣湖中学数学九上期末质量检测试题含解析_第3页
2022年浙江省义乌市绣湖中学数学九上期末质量检测试题含解析_第4页
2022年浙江省义乌市绣湖中学数学九上期末质量检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1某楼盘2016年房价为每平方米11 000元,经过两年连续降价后,2018年房价为9800元设该楼盘这两年房价平均降低率为x,根据题意可列方程为()A9800(1-x)2+9800(1-x)+9800=11000B9800(1+x)2+9800

2、(1+x)+9800=11000C11000(1+x)29800D11000(1x)298002如图,传送带和地面成一斜坡,它把物体从地面送到离地面5米高的地方,物体所经过路程是13米,那么斜坡的坡度为()A1:2.6B1:C1:2.4D1:3把抛物线向右平移个单位,再向下平移个单位,即得到抛物线( )Ay=-(x+2) 2+3By=-(x-2) 2+3Cy=-(x+2) 2-3Dy=-(x-2) 2-34已知,则=( )ABCD5抛物线经过点与,若,则的最小值为( )A2BC4D6设A( x1 , y1)、B (x2 , y2)是反比例函数 图象上的两点若x1x20,则y1与y2之间的关系是

3、( )Ay1y20By2y10Cy2y10Dy1y207若抛物线y=ax2+2ax+4(a0)上有A(-,y1),B(-,y2),C(,y3)三点,则y1,y2,y3的大小关系为( )Ay1y2 y3By3y2 y1Cy3y1 y2Dy2y3 y18下列事件中是不可能事件的是( )A三角形内角和小于180B两实数之和为正C买体育彩票中奖D抛一枚硬币2次都正面朝上9下列成语描述的事件为随机事件的是()A水涨船高 B守株待兔 C水中捞月 D缘木求鱼10如图,的半径为2,圆心的坐标为,点是上的任意一点,且、与轴分别交于、两点,若点、点关于原点对称,则的最大值为( )A7B14C6D15二、填空题(每

4、小题3分,共24分)11两块大小相同,含有30角的三角板如图水平放置,将CDE绕点C按逆时针方向旋转,当点E的对应点E恰好落在AB上时,CDE旋转的角度是_度12如图,已知矩形ABCD的两条边AB1,AD,以B为旋转中心,将对角线BD顺时针旋转60得到线段BE,再以C为圆心将线段CD顺时针旋转90得到线段CF,连接EF,则图中阴影部分面积为_13已知抛物线,那么点P(-3,4)关于该抛物线的对称轴对称的点的坐标是_14分解因式:=_15一个扇形的圆心角是120它的半径是3cm则扇形的弧长为_cm16在中,则的面积是_17正八边形的每个外角的度数和是_18已知cos( a-15)=,那么a=_三

5、、解答题(共66分)19(10分)华联超市准备代销一款运动鞋,每双的成本是170元,为了合理定价,投放市场进行试销据市场调查,销售单价是200元时,每天的销售量是40双,而销售单价每降低1元,每天就可多售出5双,设每双降低x元(x为正整数),每天的销售利润为y元(1)求y与x的函数关系式;(2)每双运动鞋的售价定为多少元时,每天可获得最大利润?最大利润是多少?20(6分)一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同(1)搅匀后从袋子中任意摸出1个球,摸到红球的概率是多少?(2)搅匀后先从袋子中任意摸出1个球,记录颜色后不放回,再从袋子中任意摸出1个球,用画树状图或列表的方法列

6、出所有等可能的结果,并求出两次都摸到白球的概率21(6分)为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶5次,成绩统计如下表:(1)甲、乙的平均成绩分别是多少?(2)甲、乙这5次比赛的成绩的方差分别是多少?(3)如果规定成绩较稳定者胜出,你认为谁应该胜出?说明你的理由;(4)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?22(8分)某商场经销一种高档水果,原价每千克50元(1)连续两次降价后每千克32元,若每次下降的百分率相同,求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不

7、变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,则日销售量将减少20千克,那么每千克水果应涨价多少元时,商场获得的总利润(元)最大,最大是多少元?23(8分)如图,在ABC中,ABAC,以AB为直径作O交BC于点D过点D作EFAC,垂足为E,且交AB的延长线于点F(1)求证:EF是O的切线;(2)已知AB4,AE1求BF的长24(8分)如图,在ABC中,BC的垂直平分线分别交BC、AC于点D、E,BE交AD于点F,ABAD(1)判断FDB与ABC是否相似,并说明理由;(2)BC6,DE2,求BFD的面积25(10分)某大学生利用暑假40天社会实践参与了一家网店经营,了解到一种成本为2

8、0元/件的新型商品在第x天销售的相关信息如下表所示销售量p(件)P=50 x销售单价q(元/件)当1x20时,当21x40时,(1)请计算第几天该商品的销售单价为35元/件?(2)求该网店第x天获得的利润y关于x的函数关系式(3)这40天中该网店第几天获得的利润最大?最大利润是多少?26(10分)已知x28x+16m20(m0)是关于x的一元二次方程(1)证明:此方程总有两个不相等的实数根;(2)若等腰ABC的一边长a6,另两边长b、c是该方程的两个实数根,求ABC的面积参考答案一、选择题(每小题3分,共30分)1、D【分析】设该楼盘这两年房价每年平均降低率为x,则第一次降价后房价为每平方米1

9、1000(1-x)元,第二次降价后房价为每平方米11000(1-x)2元,然后找等量关系列方程即可【详解】解:设该楼盘这两年房价每年平均降低率为x,则由题意得:11000(1-x)29800故答案为D【点睛】本题考查了一元二次方程的应用,审清题意、找到等量关系是解决问题的关键2、C【解析】根据题意作出合适的辅助线,由坡度的定义可知,坡度等于坡角对边与邻边的比值,根据题目中的数据可以得到坡度,本题得以解决【详解】如图据题意得;AB=13、AC=5,则BC=,斜坡的坡度i=tanABC=12.4,故选C.3、D【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答即可.【详解】抛物线向右平移

10、个单位,得:,再向下平移个单位,得:.故选:.【点睛】本题主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.4、B【分析】由得到x=,再代入计算即可.【详解】,x=,=.故选B.【点睛】考查了求代数式的值,解题关键是根据得到x=,再代入计算即可.5、D【分析】将点A、B的坐标代入解析式得到y1与y2,再根据,即可得到答案.【详解】将点A、B的坐标分别代入,得,得:b,b的最小值为-4,故选:D.【点睛】此题考查二次函数点与解析式的关系,解不等式求取值,正确理解题意是解题的关键.6、B【解析】先根据反比例函数的解析式判断出函数图象所在的象限,再

11、根据x1x10即可得出结论【详解】反比例函数中,k=10,函数图象的两个分支位于一、三象限,且在每一象限内y随x的增大而减小,x1x10,0y1y1故选:B【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键7、C【分析】根据抛物线yax22ax4(a0)可知该抛物线开口向下,可以求得抛物线的对称轴,又因为抛物线具有对称性,从而可以解答本题【详解】解:抛物线yax22ax4(a0),对称轴为:x,当x1时,y随x的增大而增大,当x1时,y随x的增大而减小,A(,y1),B(,y2),C(,y3)在抛物线上,且,0.5,y3y1y

12、2,故选:C【点睛】本题考查二次函数的性质,解题的关键是明确二次函数具有对称性,在对称轴的两侧它的增减性不一样8、A【解析】根据三角形的内角和定理,可知:“三角形内角和等于180”,故是不可能事件;根据实数的加法,可知两实数之和可能为正,可能是0,可能为负,故是可能事件;根据买彩票可能中奖,故可知是可能事件;根据硬币的特点,抛一枚硬币2次有可能两次都正面朝上,故是可能事件.故选A.9、B【解析】试题解析:水涨船高是必然事件,A不正确;守株待兔是随机事件,B正确;水中捞月是不可能事件,C不正确缘木求鱼是不可能事件,D不正确;故选B考点:随机事件.10、B【分析】根据“PAPB,点A与点B关于原点

13、O对称”可知AB=2OP,从而确定要使AB取得最大值,则OP需取得最大值,然后过点M作MQx轴于点Q,确定OP的最大值即可.【详解】PAPBAPB=90点A与点B关于原点O对称,AO=BOAB=2OP若要使AB取得最大值,则OP需取得最大值,连接OM,交M于点,当点P位于位置时,OP取得最小值,过点M作MQx轴于点Q,则OQ=3,MQ=4,OM=5当点P在的延长线于M的交点上时,OP取最大值,OP的最大值为3+22=7AB的最大值为72=14故答案选B.【点睛】本题考查的是圆上动点与最值问题,能够找出最值所在的点是解题的关键.二、填空题(每小题3分,共24分)11、1【分析】根据旋转性质及直角

14、三角形两锐角互余,可得ECB是等边三角形,从而得出ACE的度数,再根据ACE+ACE=90得出CDE旋转的度数【详解】解:根据题意和旋转性质可得:CE=CE=BC,三角板是两块大小一样且含有1的角,B=60ECB是等边三角形,BCE60,ACE90601,故答案为:1【点睛】本题考查了旋转的性质、等边三角形的判定和性质,本题关键是得到ABC等边三角形12、【分析】矩形ABCD的两条边AB1,AD,得到DBC30,由旋转的性质得到BDBE,BDE60,求得CBEDBC30,连接CE,根据全等三角形的性质得到BCEBCD90,推出D,C,E三点共线,得到CECD1,根据三角形和扇形的面积公式即可得

15、到结论【详解】矩形ABCD的两条边AB1,AD,DBC30,将对角线BD顺时针旋转60得到线段BE,BDBE,BDE60,CBEDBC30,连接CE,DBCEBC(SAS),BCEBCD90,D,C,E三点共线,CECD1,图中阴影部分面积SBEF+SBCD+S扇形DCFS扇形DBE+ ,故答案为:【点睛】本题考查了旋转的性质,解直角三角形,矩形的性质,扇形的面积计算等知识点,能求出各个部分的面积是解此题的关键13、(1,4).【解析】试题解析:抛物线的对称轴为: 点关于该抛物线的对称轴对称的点的坐标是 故答案为14、【解析】分析:利用平方差公式直接分解即可求得答案解答:解:a2-b2=(a+

16、b)(a-b)故答案为(a+b)(a-b)15、2【解析】分析:根据弧长公式可得结论详解:根据题意,扇形的弧长为=2,故答案为:2点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键16、24【分析】如图,由三角函数的定义可得,可得AB=,利用勾股定理可求出AC的长,根据三角形面积公式求出ABC的面积即可【详解】,AB=,()2=AC2+BC2,BC=8,25AC2=9AC2+964,解得:AC=6(负值舍去),ABC的面积是86=24,故答案为:24【点睛】本题考查三角函数的定义,在直角三角形中,锐角的正弦是角的对边与斜边的比值;余弦是角的邻边与斜边的比值;正切是角的对边与邻边的比值;

17、熟练掌握三角函数的定义是解题关键17、360【分析】根据题意利用正多边形的外角和等于360度,进行分析计算即可得出答案【详解】解:因为任何一个多边形的外角和都是360,所以正八边形的每个外角的度数和是360故答案为:360【点睛】本题主要考查多边形的外角和定理,熟练掌握任何一个多边形的外角和都是360是解题的关键18、45【分析】由题意直接利用特殊角的三角函数值,进行分析计算进而得出答案【详解】解:,a-15=30,a=45故答案为:45【点睛】本题主要考查特殊角的三角函数值,牢记是特殊角的三角函数值解题的关键三、解答题(共66分)19、(1)y=5x2+110 x+1200;(2) 售价定为

18、189元,利润最大1805元【解析】利润等于(售价成本)销售量,根据题意列出表达式,借助二次函数的性质求最大值即可;【详解】(1)y(200 x170)(40+5x)5x2+110 x+1200;(2)y5x2+110 x+12005(x11)2+1805,抛物线开口向下,当x11时,y有最大值1805,答:售价定为189元,利润最大1805元;【点睛】本题考查实际应用中利润的求法,二次函数的应用;能够根据题意列出合理的表达式是解题的关键20、(1);(2),见解析【分析】(1)袋中一共有3个球,有3种等可能的抽取情况,抽取红球的情况只有1种,摸到红球的概率即可求出;(2)分别使用树状图法或列

19、表法将抽取球的结果表示出来,第一次共有3种不同的抽取情况,第二次有2种不同的抽取情况,所有等可能出现的结果有6种,找出两次都是白球的的抽取结果,即可算出概率【详解】解:(1)袋中一共有3个球,有3种等可能的抽取情况,抽取红球的情况只有1种,;(2)画树状图,根据题意,画树状图结果如下:一共有6种等可能出现的结果,两次都抽取到白球的次数为2次,;用列表法,根据题意,列表结果如下:一共有6种等可能出现的结果,两次都抽取到白球的次数为2次,【点睛】本题考查了列表法或树状图法求概率,用图表的形式将第一次、第二次抽取所可能发生的情况一一列出,避免遗漏21、(1)=8(环),=8(环);(2),;(3)甲

20、胜出,理由见解析;(4)见解析【分析】(1)根据平均数的计算公式先求出平均数, (2)根据方差公式进行计算即可;(3)根据方差的意义,方差越小越稳定,即可得出答案(4)叙述符合题意,有道理即可【详解】(1)(环),(环)(2)(3)甲胜出因为,甲的成绩稳定,所以甲胜出(4)如果希望乙胜出,应该制定的评判规则为:如果平均成绩相同,则命中满环(10环)次数多者胜出(答案不唯一)【点睛】本题考查一组数据的平均数和方差的意义,是一个基础题,解题时注意平均数是反映数据的平均水平,而方差反映波动的大小,波动越小数据越稳定22、(1)每次下降的百分率为20%;(2)每千克水果应涨价1.5元时,商场获得的利润

21、最大,最大利润是6125元【分析】(1) 设每次下降百分率为,得方程,求解即可(2)根据销售利润=销售量(售价进价),列出每天的销售利润W(元)与涨价元之间的函数关系式即可求解【详解】解:(1)设每次下降百分率为,根据题意,得,解得(不合题意,舍去)答:每次下降的百分率为20%;(2)设每千克涨价元,由题意得:,开口向下,有最大值,当(元)时,(元)答:每千克水果应涨价15元时,商场获得的利润最大,最大利润是6125元【点睛】本题考查了二次函数的性质在实际生活中的应用最大销售利润的问题常利函数的增减性来解答,首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案23、(1)证明见解析

22、;(2)2.【解析】(1)作辅助线,根据等腰三角形三线合一得BDCD,根据三角形的中位线可得ODAC,所以得ODEF,从而得结论;(2)证明ODFAEF,列比例式可得结论【详解】(1)证明:连接OD,AD,AB是O的直径,ADBC,ABAC,BDCD,OAOB,ODAC,EFAC,ODEF,EF是O的切线;(2)解:ODAE,ODFAEF,ODAE=OFAF,AB4,AE1,23=BF+2BF+4,BF2【点睛】本题主要考查的是圆的综合应用,解答本题主要应用了圆周角定理、相似三角形的性质和判定,圆的切线的判定,掌握本题的辅助线的作法是解题的关键24、(1)相似,理由见解析;(2)【分析】(1)

23、根据线段垂直平分线的性质得出BECE,根据等腰三角形的性质得出EBCECB,ABCADB,根据相似三角形的判定得出即可;(2)根据FDBABC得出,求出AB2FD,可得AD2FD,DFAF,根据三角形的面积得出SAFBSBFD,SAEFSEFD,根据DE为BC的垂直平分线可得SBDE=SCDE,可求出ABC的面积,再根据相似三角形的性质求出答案即可【详解】(1)FDB与ABC相似,理由如下:DE是BC垂直平分线,BECE,EBCECB,ABAD,ABCADB,FDBABC(2)FDBABC,AB2FD,ABAD,AD2FD,DFAF,SAFBSBFD,SAEFSEFD,SABC3SBDE3329,FDBABC,()2()2,SBFDSABC9【点睛】本题考查线段垂直平分线的性质及相似三角形的判定与性质,线段存在平分线上的点到线段两端的距离相等;熟练掌握相似三角形的面积比等于相似比的平方是解题关键25、(1)第10天或第31天该商品的销售单价为31元/件(2)(3)这

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论