




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题3分,共30分)1边长为2的正六边形的面积为()A6B6C6D2某公司为调动职工工作积极性,向工会代言人提供了两个加薪方案,要求他从中选择:方案一:是12个月后,在年薪20000元的基础上每年提高500元(第一年年薪20000元);方案二:是6个月后,在半年薪10000元的基础上每半年提高125元(第6个月末发薪水10
2、000元);但不管是选哪一种方案,公司都是每半年发一次工资,如果你是工会代言人,认为哪种方案对员工更有利?( )A方案一B方案二C两种方案一样D工龄短的选方案一,工龄长的选方案二3下列关系式中,是反比例函数的是( )AyByCxyD14如图所示的两个三角形(B、F、C、E四点共线)是中心对称图形,则对称中心是()A点CB点DC线段BC的中点D线段FC的中点5某校校园内有一个大正方形花坛,如图甲所示,它由四个边长为3米的小正方形组成,且每个小正方形的种植方案相同其中的一个小正方形ABCD如图乙所示,DG=1米,AE=AF=x米,在五边形EFBCG区域上种植花卉,则大正方形花坛种植花卉的面积y与x
3、的函数图象大致是()ABCD6如图,O是ABC的外接圆,连接OC、OB,BOC100,则A的度数为()A30B40C50D607若双曲线y=在每一个象限内,y随x的增大而减小,则k的取值范围是()Ak3Bk3Ck3Dk38已知点P(a,b)是平面直角坐标系中第四象限的点,则化简+|b-a|的结果是()ABaCD9如果,那么的值等于()ABCD10下列四张印有汽车品牌标志图案的卡片中,是中心对称图形的卡片是( )ABCD二、填空题(每小题3分,共24分)11一元二次方程的根是_.12布袋里有三个红球和两个白球,它们除了颜色外其他都相同,从布袋里摸出两个球,摸到两个红球的概率是_13抛物线y=2x
4、2+4x-1向右平移_个单位,经过点P(4,5).14如图,E,G,F,H分别是矩形ABCD四条边上的点,EFGH,若AB2,BC3,则EFGH 15如图,正方形EFGH的四个顶点分别在正方形ABCD的四条边上,若正方形EFGH与正方形ABCD的相似比为,则()的值为_.16化简:=_17如图,AD,BC相交于点O,ABCD若AB2,CD3,则ABO与DCO的面积之比为_18如图,点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,当四边形ABCD的边至少满足 条件时,四边形EFGH是矩形三、解答题(共66分)19(10分)如图,与关于O点中心对称,点E、F在线段AC上,且
5、AF=CE求证:FD=BE20(6分)如图,已知抛物线与x轴交于A、B两点,与y轴交于C点,其中A(1,0),C(0,3)(1)求该抛物线的解析式; (2)求该抛物线的对称轴及点B的坐标;(3)设点P为该抛物线对称轴上的一个动点,是否存在点P使BPC为直角三角形,若存在,求出点P的坐标;若不存在,请说明理由21(6分)如图,是ABC的外接圆,AB是的直径,CD是ABC的高(1)求证:ACDCBD;(2)若AD=2,CD=4,求BD的长22(8分)综合与实践背景阅读:旋转就是将图形上的每一点在平面内绕着旋转中心旋转固定角度的位置移动,其中“旋”是过程,“转”是结果旋转作为图形变换的一种,具备图形
6、旋转前后对应点到旋转中心的距离相等:对应点与旋转中心所连线段的夹角等于旋转角:旋转前、后的图形是全等图形等性质所以充分运用这些性质是在解决有关旋转问题的关健实践操作:如图1,在RtABC中,B90,BC2AB12,点D,E分别是边BC,AC的中点,连接DE,将EDC绕点C按顺时针方向旋转,记旋转角为问题解决:(1)当0时, ;当180时, (2)试判断:当0a360时,的大小有无变化?请仅就图2的情形给出证明问题再探:(3)当EDC旋转至A,D,E三点共线时,求得线段BD的长为 23(8分)(特例感知)(1)如图,ABC 是O 的圆周角,BC 为直径,BD 平分ABC 交O 于点 D,CD=3
7、, BD=4,则点 D 到直线 AB 的距离为 (类比迁移)(2)如图,ABC 是O 的圆周角,BC 为O 的弦,BD 平分ABC 交O 于点 D,过 点 D 作 DEBC,垂足为 E,探索线段 AB、BE、BC 之间的数量关系,并说明理由(问题解决)(3)如图,四边形 ABCD 为O 的内接四边形,ABC=90,BD 平分ABC,BD= 7, AB=6,则ABC 的内心与外心之间的距离为 24(8分)用适当的方法解下列方程 (1)3x(x+3)2(x+3)(2)2x24x3125(10分)如图,的直径垂直于弦,垂足为,为延长线上一点,且(1)求证:为的切线;(2)若,求的半径26(10分)如
8、图,是的直径,弦于点,点在上,恰好经过圆心,连接.(1)若,求的直径;(2)若,求的度数.参考答案一、选择题(每小题3分,共30分)1、A【解析】首先根据题意作出图形,然后可得OBC是等边三角形,然后由三角函数的性质,求得OH的长,继而求得正六边形的面积【详解】解:如图,连接OB,OC,过点O作OHBC于H,六边形ABCDEF是正六边形,BOC36060,OB0C,OBC是等边三角形,BCOBOC2,它的半径为2,边长为2;在RtOBH中,OHOBsin602,边心距是:;S正六边形ABCDEF6SOBC626故选:A【点睛】本题考查圆的内接正六边形的性质、正多边形的内角和、等边三角形的判定与
9、性质以及三角函数等知识此题难度不大,注意掌握数形结合思想的应用2、B【分析】根据题意分别计算出方案一和方案二的第n年的年收入,进行大小比较,从而得出选项.【详解】解:第n年:方案一: 12个月后,在年薪20000元的基础上每年提高500元,第一年:20000元第二年:20500元第三年:21000元第n年:20000+500(n-1)=500n+19500元,方案二:6个月后,在半年薪10000元的基础上每半年提高125元,第一年:20125元第二年:20375元第三年:20625元第n年:10000+250(n-1)+10000+250(n-1)+125=500n+19625元,由此可以看出
10、方案二年收入永远比方案一,故选方案二更划算;故选B.【点睛】本题考查方案选择,解题关键是准确理解题意根据题意列式比较方案间的优劣进行分析.3、C【解析】反比例函数的一般形式是y(k0)【详解】解:A、当k=0时,该函数不是反比例函数,故本选项错误;B、该函数是正比例函数,故本选项错误;C、由原函数变形得到y=-,符合反比例函数的定义,故本选项正确;D、只有一个变量,它不是函数关系式,故本选项错误故选C【点睛】本题考查了正比例函数及反比例函数的定义,注意区分:正比例函数的一般形式是y=kx(k0),反比例函数的一般形式是y(k0)4、D【分析】直接利用中心对称图形的性质得出答案【详解】解:两个三
11、角形(B、F、C、E四点共线)是中心对称图形,则对称中心是:线段FC的中点故选:D【点睛】本题比较容易,考查识别图形的中心对称性要注意正确区分轴对称图形和中心对称图形,中心对称是要寻找对称中心,旋转180度后重合5、A【解析】试题分析:SAEF=AEAF=,SDEG=DGDE=1(3x)=,S五边形EFBCG=S正方形ABCDSAEFSDEG=,则y=4()=,AEAD,x3,综上可得:(0 x3)故选A考点:动点问题的函数图象;动点型6、C【分析】直接根据圆周角定理即可得出结论【详解】O是ABC的外接圆,BOC100,ABOC=50故选:C【点睛】本题考查的是圆周角定理,熟知在同圆或等圆中,
12、同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键7、C【分析】根据反比例函数的性质可解【详解】解:双曲线在每一个象限内,y随x的增大而减小, k-30 k3 故选:C【点睛】本题考查了反比例函数的性质,掌握反比例函数,当k0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小; 当k0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大8、A【解析】根据第四象限的点的横坐标是正数,纵坐标是负数,求解即可【详解】点P(a,b)是平面直角坐标系中第四象限的点,a0,b0,ba0,+|b-a|=b(ba)=bb+a=2b+a=a2b,故选A.
13、【点睛】本题考查点的坐标, 二次根式的性质与化简,解题的关键是根据象限特征判断正负.9、D【分析】依据,即可得到a=b,进而得出的值【详解】,3a3b=5b,3a=8b,即a=b,=故选D【点睛】本题考查了比例的性质,解决问题的关键是运用内项之积等于外项之积10、B【解析】根据中心对称图形的概念:如果一个图形绕某一个点旋转180后能与它自身重合,我们就把这个图形叫做中心对称图形,逐一判断即可【详解】A.不是中心对称图形,故错误;B.是中心对称图形,故正确;C.不是中心对称图形,故错误;D.不是中心对称图形,故错误;故选:B【点睛】本题主要考查中心对称图形,掌握中心对称图形的概念是解题的关键二、
14、填空题(每小题3分,共24分)11、x1=1, x2=2.【分析】整体移项后,利用因式分解法进行求解即可得.【详解】x(x-2)-(x-2)=0,x-1=0或x-2=0,所以x1=1, x2=2,故答案为x1=1, x2=2.【点睛】本题考查了解一元二次方程因式分解法,根据方程的特点熟练选择恰当的方法进行求解是关键.12、【解析】应用列表法,求出从布袋里摸出两个球,摸到两个红球的概率是多少即可【详解】解:红1红2红3白1白2红1-红1红2红1红3红1白1红1白2红2红2红1-红2红3红2白1红2白2红3红3红1红3红2-红3白1红3白2白1白1红1白1红2白1红3-白1白2白2白2红1白2红2
15、白2红3白2白1-从布袋里摸出两个球的方法一共有20种,摸到两个红球的方法有6种,摸到两个红球的概率是故答案为:【点睛】此题主要考查了列表法与树状图法,要熟练掌握,解答此题的关键是要明确:列表的目的在于不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率13、3或7【分析】先化成顶点式,设向右平移个单位,再由平移规律求出平移后的抛物线解析式,再把点(4,5)代入新的抛物线解析式即可求出m的值【详解】,设抛物线向右平移个单位,得到:,经过点(4,5),化简得:,解得:或故答案为:或【点睛】本题主要考查了函数图象的平移和一个点在图象上那么这个点就满足该图象的解析式,
16、要求熟练掌握平移的规律:左加右减,上加下减,并用规律求函数解析式14、3:2【详解】解:过F作FMAB于M,过H作HNBC于N,则4=5=90=AMF四边形ABCD是矩形,ADBC,ABCD,A=D=90=AMF,四边形AMFD是矩形,FMAD,FM=AD=BC=3,同理HN=AB=2,HNAB,2=2,HGEF,HOE=90,2+GHN=90,3+GHN=90,2=3=2,即2=3,4=5,FMEHNG,EF:GH=AD:CD=3:2故答案为:3:2考点:2相似三角形的判定与性质;2矩形的性质15、【分析】根据题意,由AAS证明AEHBFE,则BE=AH,根据相似比为,令EH=,AB=,设A
17、E=,AH=,在直角三角形AEH中,利用勾股定理,即可求出的值,即可得到答案.【详解】解:在正方形EFGH与正方形ABCD中,A=B=90,EF=EH,FEH=90,AEH+AHE=90,BEF+AEH=90,AHE=BEF,AEHBFE(AAS),BE=AH,令EH=,AB=,在直角三角形AEH中,设AE=,AH=AB-AE=,由勾股定理,得,即,解得:或,;故答案为:.【点睛】本题考查了相似四边形的性质,正方形的性质,全等三角形的判定和性质,勾股定理,解题的关键是利用勾股定理求出AE和BE的长度.16、.【解析】试题解析:原式 故答案为17、【分析】由ABCD可得出AD,BC,进而可得出A
18、BODCO,再利用相似三角形的性质可求出ABO与DCO的面积之比【详解】ABCD,AD,BC,ABODCO, 故答案为:【点睛】此题考查相似三角形的判定及性质,相似三角形的面积的比等于相似比的平方.18、ABCD【解析】解:需添加条件ABDC,、分别为四边形中、中点,四边形为平行四边形E、H是AD、AC中点,EHCD,ABDC,EFHGEFEH,四边形EFGH是矩形故答案为:ABDC三、解答题(共66分)19、详见解析【分析】根据中心对称得出OB=OD,OA=OC,求出OF=OE,根据SAS推出DOFBOE即可【详解】证明:ABO与CDO关于O点中心对称,OB=OD,OA=OCAF=CE,OF
19、=OE在DOF和BOE中,DOFBOE(SAS)FD=BE20、(1);(2)x=-1;(-3,0);(3)存在;P的坐标为或或或【分析】(1)将点A、C两点的坐标代入二次函数解析式中即可求出结论;(2)根据对称轴公式即可求出抛物线的对称轴,然后令y=0,求出x的值,即可求出点B的坐标;(3)设P(-1,t),利用平面直角坐标系中任意两点的距离公式求出,然后根据直角顶点分类讨论,分别利用勾股定理列出方程即可求出结论【详解】解:(1)把点A(1,0),C(0,3) 代入二次函数,得 解得: 抛物线的解析式是;(2),抛物线的对称轴为x=-1令y=0,则 解得点B的坐标为(-3,0);(3)存在,
20、设P(-1,t),又C(0,3),若点B为直角顶点,则即:解之得:;若点C为直角顶点,则即:解之得:;若点P为直角顶点,则即:解之得:,综上所述P的坐标为或或或【点睛】此题考查的是二次函数的综合大题,掌握利用待定系数法求二次函数解析式、抛物线的对称轴公式、平面直角坐标系中任意两点的距离公式和勾股定理是解决此题的关键21、(1)证明见解析;(2)【分析】(1)由垂直的定义,得到,由同角的余角相等,得到,即可得到结论成立;(2)由(1)可知,得到,即可求出BD.【详解】(1)证明:是的直径,,(2)解:由(1)得,即,【点睛】本题考查了圆周角定理,相似三角形的判定和性质,同角的余角相等,解题的关键
21、是熟练掌握相似三角形的判定和性质进行解题.22、(1),;(2)无变化,证明见解析;(2)6或【分析】问题解决:(1)根据三角形中位线定理可得:BD=CDBC=6,AE=CEAC=2,即可求出的值;先求出BD,AE的长,即可求出的值;(2)证明ECADCB,可得;问题再探:(2)分两种情况讨论,由矩形的判定和性质以及相似三角形的性质可求BD的长【详解】问题解决:(1)当=0时BC=2AB=3,AB=6,AC6,点D、E分别是边BC、AC的中点,BD=CDBC=6,AE=CEAC=2,DEAB,故答案为:;如图1,当=180时将EDC绕点C按顺时针方向旋转,CD=6,CE=2,AE=AC+CE=
22、9,BD=BC+CD=18,故答案为:(2)如图2,当0260时,的大小没有变化证明如下:ECD=ACB,ECA=DCB,又,ECADCB,问题再探:(2)分两种情况讨论:如图2AC=6,CD=6,CDAD,AD3AD=BC,AB=DC,四边形ABCD是平行四边形B=90,四边形ABCD是矩形,BD=AC=6如图4,连接BD,过点D作AC的垂线交AC于点Q,过点B作AC的垂线交AC于点PAC=6,CD=6,CDAD,AD3在RtCDE中,DE=2,AE=ADDE=32=9,由(2)可得:,BD综上所述:BD=6或故答案为:6或【点睛】本题是几何变换综合题,考查了勾股定理,矩形的判定和性质,相似
23、三角形判定和性质,正确作出辅助线,利用分类讨论思想解决问题是本题的关键23、(1)(2)AB+BC=2BE(3) 【分析】(1)由AB是直径可得BDC=90,根据勾股定理可得BC=5过点D分别作DEBC于点E,DFBA于点F由BD平分ABC可得DE=DF=,DF即为所求,(2)过点D分别作DEBC于点E,DFBA于点F由ABC+ADC=180,ABC+EDF=180可得ADF=CDE进而可证ADFCDE(ASA)AF=CEBFAB=BCBE易证BF=BEBEAB=BCBE,即AB+BC=2BE(3)如图易得四边形BEDF为正方形,BD是对角线,可得正方形边长为7由(2)可得BC=2BEAB=8
24、,由勾股定理可得AC=10作ABC内切圆,M为圆心,N为切点,由切线长定理可得,所以ON=54=1由面积法易得内切圆半径为2【详解】解:(1)由AB是直径可得BDC=90,根据勾股定理可得BC=5过点D分别作DEBC于点E,DFBA于点F由BD平分ABC可得DE=DF=,DF即为所求(2)过点D分别作DEBC于点E,DFBA于点F由ABC+ADC=180,ABC+EDF=180可得ADF=CDE进而可证ADFCDE(ASA)AF=CEBFAB=BCBE易证BF=BEBEAB=BCBE,即AB+BC=2BE(3)如图易得四边形BEDF为正方形,BD是对角线,可得正方形边长为7由(2)可得BC=2BEAB=8,由勾股定理可得AC=10作ABC内切圆,M为圆心,N为切点,由切线长定理可得,所以ON=54=1由面积法易得内切圆半径为2, 故答案:(1)(2)AB+BC=2BE(3)【点睛】本题主要考查角平分线、三角形全等及三角形内心与外心的综合,难
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商场库房收费管理制度
- 工地特种设备管理制度
- 办公场所安全管理制度
- 公司公文处理管理制度
- 学校学生疫情管理制度
- 智能照明系统中的嵌入式应用试题及答案
- 家电仓库安全管理制度
- 公司抖音员工管理制度
- 员工培训财务管理制度
- 大型公司电费管理制度
- 买卖合同法律知识及风险防范培训课件
- 水库除险加固工程设计(毕业设计)
- 鱼缸定做合同
- 2024-2030年中国净水器行业市场深度调研及发展趋势与投资前景研究报告
- GB/T 9799-2024金属及其他无机覆盖层钢铁上经过处理的锌电镀层
- 置换合同模板
- 江苏省南京市秦淮区2023-2024学年七年级下学期期末考试语文试题
- DL-T5190.1-2022电力建设施工技术规范第1部分:土建结构工程
- 教师语言与沟通艺术智慧树知到期末考试答案章节答案2024年温州大学
- 河南省2022-2023学年七年级下学期语文期末试卷(含答案)
- 新人教版七年级数学上册期末测试卷及答案【全面】
评论
0/150
提交评论