2022-2023学年陕西省安康市数学九年级第一学期期末检测模拟试题含解析_第1页
2022-2023学年陕西省安康市数学九年级第一学期期末检测模拟试题含解析_第2页
2022-2023学年陕西省安康市数学九年级第一学期期末检测模拟试题含解析_第3页
2022-2023学年陕西省安康市数学九年级第一学期期末检测模拟试题含解析_第4页
2022-2023学年陕西省安康市数学九年级第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1下列成语所描述的事件是必然事件的是()A守株待兔B瓮中捉鳖C拔苗助长D水中捞月2在同一直角坐标系中,一次函数与反比例函数的图象大致是( )ABCD3如果反

2、比例函数y=kx的图像经过点(3,4),那么该函数的图像位于()A第一、二象限B第一、三象限C第二、四象限D第三、四象限4若反比例函数的图象经过点,则这个函数的图象一定还经过点( )ABCD5小明在太阳光下观察矩形木板的影子,不可能是( )A平行四边形B矩形C线段D梯形6如图所示,在矩形中,点在边上,平分,垂足为,则等于( )AB1CD27如图,在直角坐标系中,有两点A(6,3)、B(6,0)以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为( )A(2,1)B(2,0)C(3,3)D(3,1)8如图,中,则等于( )ABCD9如图,在O中,AB为直径,CD

3、为弦,CAB50,则ADC( )A25B30C40D5010若反比例函数y=的图象经过点(2,6),则k的值为()A12B12C3D3二、填空题(每小题3分,共24分)11有一块三角板,为直角,将它放置在中,如图,点、在圆上,边经过圆心,劣弧的度数等于_12已知,则_13分解因式:_14如图,是的直径,弦则阴影部分图形的面积为_15计算:2cos30+tan454sin260_16如图,在平面直角坐标系中,以点为圆心画圆,与轴交于;两点,与轴交于两点,当时,的取值范围是_.17在矩形中,绕点顺时针旋转到,连接,则_ 18如图,已知的面积为48,将沿平移到,使和重合,连结交于,则的面积为_三、解

4、答题(共66分)19(10分)已知抛物线yx22ax+m(1)当a2,m5时,求抛物线的最值;(2)当a2时,若该抛物线与坐标轴有两个交点,把它沿y轴向上平移k个单位长度后,得到新的抛物线与x轴没有交点,请判断k的取值情况,并说明理由;(3)当m0时,平行于y轴的直线l分别与直线yx(a1)和该抛物线交于P,Q两点若平移直线l,可以使点P,Q都在x轴的下方,求a的取值范围20(6分)如图,直线与x轴交于点A,与y轴交于点B,抛物线y=-x2+bx+c经过A,B两点(1)求抛物线的解析式(2)点P是第一象限抛物线上的一点,连接PA,PB,PO,若POA的面积是POB面积的倍求点P的坐标;点Q为抛

5、物线对称轴上一点,请求出QP+QA的最小值21(6分)某高级酒店为了吸引顾客,设立了一个可以自由转动的转盘,如图所示,并规定:顾客消费100以上(不包括100元),就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准九折、八折、七折、五折区域顾客就可以获得此项待遇(转盘等分成16份).(1)甲顾客消费80元,是否可获得转动转盘的机会?(2)乙顾客消费150元,获得打折待遇的概率是多少?(3)他获得九折,八折,七折,五折待遇的概率分别是多少?22(8分)已知,如图,在RtABC中,BAC90,ABC45,点D为直线BC上一动点(点D不与点B,C重合)以AD为边作正方形ADEF,连接CF,当点

6、D在线段BC的反向延长线上,且点A,F分别在直线BC的两侧时(1)求证:ABDACF;(2)若正方形ADEF的边长为,对角线AE,DF相交于点O,连接OC,求OC的长度23(8分)(1)计算:tan31sin61cos231tan45(2)解方程:x22x1=124(8分)已知抛物线yx22和x轴交于A,B(点A在点B右边)两点,和y轴交于点C,P为抛物线上的动点(1)求出A,C的坐标;(2)求动点P到原点O的距离的最小值,并求此时点P的坐标;(3)当点P在x轴下方的抛物线上运动时,过P的直线交x轴于E,若POE和POC全等,求此时点P的坐标25(10分)如图,抛物线yx2+bx+c与x轴交于

7、A、B两点,与y轴交于C点,OA2,OC6,连接AC和BC(1)求抛物线的解析式;(2)点D在抛物线的对称轴上,当ACD的周长最小时,求点D的坐标;(3)点E是第四象限内抛物线上的动点,连接CE和BE求BCE面积的最大值及此时点E的坐标;26(10分)如图,在中,是斜边上的中线,以为直径的分别交、于点、,过点作,垂足为(1)若的半径为,求的长;(2)求证:与相切参考答案一、选择题(每小题3分,共30分)1、B【分析】根据必然事件就是一定发生的事件,即发生的概率是1的事件依次判定即可得出答案【详解】解:A选项为随机事件,故不符合题意;B选项是必然事件,故符合题意;C选项为不可能事件,故不符合题意

8、;D选项为不可能事件,故不符合题意;故选:B【点睛】本题主要考查了必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下一定发生的事件,不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,难度适中2、C【分析】由于本题不确定k的符号,所以应分k0和k0两种情况分类讨论,针对每种情况分别画出相应的图象,然后与各选择比较,从而确定答案【详解】(1)当k0时,一次函数y=kx-k经过一、三、四象限,反比例函数经过一、三象限,如图所示:(2)当k0时,一次函数y=kx-k经过一、二、四象限,反比例函数经过二、四象限如图所示:故选:C【点

9、睛】本题考查了反比例函数、一次函数的图象灵活掌握反比例函数的图象性质和一次函数的图象性质是解决问题的关键,在思想方法方面,本题考查了数形结合思想、分类讨论思想3、B【解析】根据反比例函数图象上点的坐标特点可得k=12,再根据反比例函数的性质可得函数图象位于第一、三象限【详解】反比例函数ykx的图象经过点(-3,-4),k=-3(-4)=12,120,该函数图象位于第一、三象限,故选:B【点睛】此题主要考查了反比例函数的性质,关键是根据反比例函数图象上点的坐标特点求出k的值4、A【分析】根据反比例函数的定义,得,分别判断各点的乘积是否等于,即可得到答案.【详解】解:反比例函数的图象经过点,;,故

10、A符合题意;,故B、C、D不符合题意;故选:A.【点睛】本题考查了反比例函数的定义,解题的关键是熟记定义,熟练掌握.5、D【分析】根据平行投影的特点可确定矩形木板与地面平行且与光线垂直时所成的投影为矩形;当矩形木板与光线方向平行且与地面垂直时所成的投影为一条线段;除以上两种情况矩形在地面上所形成的投影均为平行四边形,据此逐一判断即可得答案.【详解】A.将木框倾斜放置形成的影子为平行四边形,故该选项不符合题意,B.将矩形木框与地面平行放置时,形成的影子为矩形,故该选项不符合题意,C.将矩形木框立起与地面垂直放置时,形成的影子为线段,D.由物体同一时刻物高与影长成比例,且矩形对边相等,梯形两底不相

11、等,得到投影不可能是梯形,故该选项符合题意,故选:D.【点睛】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例,平行物体的影子仍旧平行或重合灵活运用平行投影的性质是解题的关键6、C【分析】利用矩形的性质、全等的性质结合方程与勾股定理计算即可得出答案.【详解】根据矩形的性质可得,D=90又EFAEAEF=90AF平分DAEEAF=DAF在AEF和ADF中AEFADFAE=AD=BC=5 ,DF=EF在RTABE中,EC=BC-BE=2设DF=EF=x,则CF=4-x在RTCEF中,即解得:x=故答案选择C.【点睛】本题考查的是矩形的综合,难度适中,解题关键是利用全等证出AEFADF

12、.7、A【分析】根据位似变换的性质可知,ODCOBA,相似比是,根据已知数据可以求出点C的坐标【详解】由题意得,ODCOBA,相似比是,又OB=6,AB=3,OD=2,CD=1,点C的坐标为:(2,1),故选A【点睛】本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用8、C【分析】直接根据圆周角定理解答即可【详解】解:ABC与AOC是一条弧所对的圆周角与圆心角,ABC=45,AOC=2ABC=245=90故选:C【点睛】本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半9、C【分析】先推出ABC=40,根

13、据同弧所对的圆周角相等,可得ABC=ADC=40,即可得出答案【详解】解:AB为直径,ACB=90,CAB50,ABC=40,ABC=ADC=40,故选:C【点睛】本题考查了直径所对的圆周角是90,同弧所对的圆周角相等,推出ABC=90是解题关键10、A【解析】试题分析:反比例函数的图象经过点(2,6),解得k=1故选A考点:反比例函数图象上点的坐标特征二、填空题(每小题3分,共24分)11、1【分析】因为半径相等,根据等边对等角结合三角形内角和定理即可求得,继而求得答案【详解】如图,连接OA,OA,OB为半径,劣弧的度数等于,故答案为:1【点睛】本题考查了圆心角、弧、弦之间的关系以及圆周角定

14、理,是基础知识要熟练掌握12、-5【分析】设,可用参数表示、,再根据分式的性质,可得答案【详解】解:设,得,故答案为:【点睛】本题考查了比例的性质,利用参数表示、可以简化计算过程13、【解析】试题分析:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止先把式子写成a2-32,符合平方差公式的特点,再利用平方差公式分解因式a2-9=a2-32=(a+3)(a-3)故答案为(a+3)(a-3)考点:因式分解-运用公式法14、【分析】根据垂径定理求得CE=ED=;然后由圆周角定理知COE=60然后通过解直角三角形求得线段O

15、C,求出扇形COB面积,即可得出答案【详解】解:AB是O的直径,弦CDAB,CD=2,CE=CD=,CEO=90,CDB=30,COB=2CDB=60,OC=2,阴影部分的面积S=S扇形COB=,故答案为:【点睛】本题考查了垂径定理、解直角三角形,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB的面积是解此题的关键15、1【分析】首先计算乘方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可【详解】解:2cos30+tan454sin2602+143+14431故答案为:1【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有

16、理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行另外,有理数的运算律在实数范围内仍然适用16、【解析】作MECD于E,MFAB于F,连接MA、MC.当CD=6和CD=时在中求出半径MC,然后在 中可求的值,于是范围可求.【详解】解:如图1,当CD=6时,作MECD于E,MFAB于F,连接MA、MC, , ME=4,MF=3,MECD, CD=6,CE=3,MA=MC=5,MFAB,=,如图2,当CD=时,作MECD于E,MFAB于F,连接MA、MC, ,ME=4,MF=3,MECD, CD=,CE=,MA=MC=8

17、,MFAB,=,综上所述,当时, .故答案是:.【点睛】本题考查了三角函数在坐标系和圆中的应用,作辅助线构造直角三角形利用垂径定理求出半径是解题的关键.17、【分析】根据勾股定理求出BD,再根据等腰直角三角形的性质,BF=BD计算即可【详解】解:四边形ABCD是矩形,AD=BC=8,A=90,AB=6,BD=10,BEF是由ABD旋转得到,BDF是等腰直角三角形,DF=BD=10,故答案为10【点睛】本题考查旋转的性质、矩形的性质、勾股定理等知识,解题的关键是灵活运用勾股定理解决问题,属于中考常考题型18、24【解析】根据平移变换只改变图形的位置,不改变图形的形状与大小,可得B=ACC,BC=

18、BC,再根据同位角相等,两直线平行可得CDAB,然后求出CD=AB,点C到AB的距离等于点C到AB的距离,根据等高的三角形的面积的比等于底边的比即可求解.也可用相似三角形的面积比等于相似比的平方来求【详解】解:根据题意得B=ACC,BC=BC,CD/AB,CD= AB(三角形的中位线),点C到AC的距离等于点C到AB的距离,CDC的面积=ABC的面积,=48=24故答案为:24【点睛】本题考查的是三角形面积的求法之一,等高的三角形的面积比等于底的比,也可用相似三角形的面积比等于相似比的平方来求得三、解答题(共66分)19、(3)-3;(2)k2,见解析;(3)a3或a3【分析】(3)把a2,m

19、5代入抛物线解析式即可求抛物线的最值;(2)把a2代入,当该抛物线与坐标轴有两个交点,分抛物线与x轴、y轴分别有一个交点和抛物线与x轴、y轴交于原点,分别求出m的值,把它沿y轴向上平移k个单位长度,得到新的抛物线与x轴没有交点,列出不等式,即可判断k的取值;(3)根据题意,分a大于2和a小于2两种情况讨论即可得a的取值范围【详解】解:(3)当a2,m5时,yx24x5(x2)23所以抛物线的最小值为3(2)当a2时,yx24x+m因为该抛物线与坐标轴有两个交点,该抛物线与x轴、y轴分别有一个交点=36-4m=2,m=4,yx24x+4=(x-2)2沿y轴向上平移k个单位长度后,得到新的抛物线与

20、x轴没有交点,则k2;该抛物线与x轴、y轴交于原点,即m=2,yx24x把它沿y轴向上平移k个单位长度后,得到新的抛物线与x轴没有交点,yx24x+k此时2,即364k2解得k4;综上,k2时,函数沿y轴向上平移k个单位长度后,得到新的抛物线与x轴没有交点; (3)当m2时,yx22ax抛物线开口向上,与x轴交点坐标为(2,2)(2a,2),a2直线l分别与直线yx(a3)和该抛物线交于P,Q两点,平移直线l,可以使点P,Q都在x轴的下方,当a2时,如图3所示,此时,当x2时,2a+32,解得a3;当a2时,如图2所示,此时,当x2a时,2aa+32,解得a3综上:a3或a3【点睛】本题主要考

21、查的是二次函数的综合应用,掌握二次函数的最值问题和根据题意进行分类讨论是解本题的关键.20、(1);(2)点P的坐标为(,1);【分析】(1)先确定出点A,B坐标,再用待定系数法求出抛物线解析式;(2)设出点P的坐标,用POA的面积是POB面积的倍,建立方程求解即可;利用对称性找到最小线段,用两点间距离公式求解即可【详解】解:(1)在中,令x=0,得y=1;令y=0,得x=2,A(2,0),B(0,1)抛物线经过A、B两点,解得抛物线的解析式为(2)设点P的坐标为(,),过点P分别作x轴、y轴的垂线,垂足分别为D、E,点P在第一象限,所以点P的坐标为(,1) 设抛物线与x轴的另一交点为C,则点

22、C的坐标为(,)连接PC交对称轴一点,即Q点,则PC的长就是QP+QA的最小值,所以QP+QA的最小值就是【点睛】此题是二次函数综合题,主要考查了待定系数法,三角形的面积,对称性,解本题的关键是求抛物线解析式21、(1)因为规定顾客消费100元以上才能获得一次转动转盘的机会,所以甲顾客消费80元,不能获得转动转盘的机会;(2)(3)P(九折);P(八折)= P(七折)= P(五折)【分析】(1)根据顾客消费100元以上(不包括100元),就能获得一次转动转盘的机会可知,消费80元达不到抽奖的条件;(2)根据题意乙顾客消费150元,能获得一次转动转盘的机会根据概率的计算方法,可得答案;(3)根据

23、概率的计算方法,可得九折,八折,七折,五折待遇的概率【详解】(1)因为规定顾客消费100元以上才能获得一次转动转盘的机会,所以甲顾客消费80元,不能获得转动转盘的机会; (2)乙顾客消费150元,能获得一次转动转盘的机会 由于转盘被均分成16份,其中打折的占5份,所以P(打折)=. (3)九折占2份,P(九折)= =;八折、七折、五折各占1份,P(八折)= , P(七折)=, P(五折)= 【点睛】本题考查概率的求法;关键是列齐所有的可能情况及符合条件的情况数目用到的知识点为:概率=所求情况数与总情况数之比22、 (1)证明见解析; (1)【分析】(1)由题意易得ADAF,DAF90,则有DA

24、BFAC,进而可证ABAC,然后问题可证;(1)由(1)可得ABDACF,则有ABDACF,进而可得ACF135,然后根据正方形的性质可求解【详解】(1)证明:四边形ADEF为正方形,ADAF,DAF90,又BAC90,DABFAC,ABC45,BAC90,ACB45,ABCACB,ABAC,ABDACF(SAS);(1)解:由(1)知ABDACF,ABDACF,ABC45,ABD135,ACF135,由(1)知ACB45,DCF90,正方形ADEF边长为,DF4,OCDF41【点睛】本题主要考查正方形的性质及等腰直角三角形的性质,熟练掌握正方形的性质及等腰直角三角形的性质是解题的关键23、(

25、1);(2)x=1【分析】(1)根据特殊角的三角函数值分别代入,再求出即可;(2)方程利用公式法求出解即可.【详解】(1)原式 (2)a=1,b=2,c=1,=b24ac=4+4=81,方程有两个不相等的实数根,x= =1【点睛】此题考查特殊角的三角函数值,解一元二次方程-公式法,熟练掌握运算法则是解题的关键24、(1)A(,0),点C的坐标为(0,2);(2)最小值为,点P的坐标为(,)或(,);(3)P(1,1)或(1,1)【分析】(1)令y0,解方程求出x的值,即可得到点A、B的坐标,令x0求出y的值,即可得到点C的坐标;(2)根据二次函数图象上点的坐标特征设点P的坐标为(x,x22),

26、利用勾股定理列式求出OP2,再根据二次函数的最值问题解答;(3)根据二次函数的增减性,点P在第三四象限时,OP1,从而判断出OC与OE是对应边,然后确定出点E与点A或点B重合,再根据全等三角形对应角相等可得POCPOE,然后根据第三、四象限角平分线上的点到角的两边距离相等的坐标特征利用抛物线解析式求解即可【详解】解:(1)令y0,则x220,解得x,点A在点B右边,A(,0),令x0,则y2,点C的坐标为(0,2);(2)P为抛物线yx22上的动点,设点P的坐标为(x,x22),则OP2x2+(x22)2x43x2+4(x2)2+,当x2,即x时,OP2最小,OP的值也最小,最小值为,此时,点

27、P的坐标为(,)或(,);(3)OP2(x2)2+,点P在第三四象限时,OP1,POE和POC全等,OC与OE是对应边,POCPOE,点P在第三、四象限角平分线上,点P在第三象限角平分线上时,yx,x22x,解得x11,x22(舍去),此时,点P(1,1);点P在第四象限角平分线上时,yx,x22x,解得x11,x22(舍去),此时,点P(1,1),综上所述,P(1,1)或(1,1)时POE和POC全等【点睛】本题是二次函数综合题型,主要利用了抛物线与坐标轴的交点的求解、二次函数的最值问题、全等三角形的性质、难点在于判断出(3)点P在第三、四象限角平分线上.25、(1)yx2x6;(2)点D的坐标为(,5);(3)BCE的面积有最大值,点E坐标为(,)【分析】(1)先求出点A,C的坐标,再将其代入yx2+bx+c即可;(2)先确定BC交对称轴于点D,由两点之间线段最短可知,此时AD+CD有最小值,而AC的长度是定值,故此时ACD的周长取最小值,求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论