版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、平方差公式的应用教案PAGE - 1 -PAGE - 20 -平方差公式的应用教案平方差是数学公式的一种,它属于乘法公式、因式分解及恒等式,目前被普遍使用。平方差指一个平方数或正方形,减去另一个平方数或正方形得来的乘法公式,下面是为大家整理的平方差公式的应用教案5篇,希望大家能有所收获!平方差公式的应用教案1教学目标1.使学生理解和掌握平方差公式,并会用公式进行计算;2.注意培养学生分析、综合和抽象、概括以及运算能力.教学重点和难点重点:平方差公式的应用.难点:用公式的结构特征判断题目能否使用公式.教学过程设计一、老师和学生共同研究平方差公式我们已经学过了多项式的乘法,两个二项式相乘,在合并同
2、类项前应该有几项合并同类项以后,积可能会是三项吗积可能是二项吗请举出例子.让学生动脑、动笔进行探讨,并发表自己的见解.教师根据学生的回答,引导学生进一步思考:两个二项式相乘,乘式具备什么特征时,积才会是二项式为什么具备这些特点的两个二项式相乘,积会是两项呢而它们的积又有什么特征(当乘式是两个数之和以及这两个数之差相乘时,积是二项式.这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了.而它们的积等于乘式中这两个数的平方差)继而指出,在多项式的乘法中,对于某些特殊形式的多项式相乘,我们把它写成公式,并加以熟记,以便遇到类似形式的多项式相
3、乘时就可以直接运用公式进行计算.以后经常遇到(a+b)(a-b)这种乘法,所以把(a+b)(a-b)=a2-b2作为公式,叫做乘法的平方差公式.在此基础上,让学生用语言叙述公式.二、运用举例变式练习例1计算(1+2x)(1-2x).解:(1+2x)(1-2x)=12-(2x)2=1-4x2.教师引导学生分析题目条件是否符合平方差公式特征,并让学生说出本题中a,b分别表示什么.例2计算(b2+2a3)(2a3-b2).解:(b2+2a3)(2a3-b2)=(2a3+b2)(2a3-b2)=(2a3)2-(b2)2=4a6-b4.教师引导学生发现,只需将(b2+2a3)中的两项交换位置,就可用平方
4、差公式进行计算.课堂练习运用平方差公式计算:(l)(x+a)(x-a);(2)(m+n)(m-n);(3)(a+3b)(a-3b); (4)(1-5y)(l+5y).例3计算(-4a-1)(-4a+1).让学生在练习本上计算,教师巡视学生解题情况,让采用不同解法的两个学生进行板演.解法1:(-4a-1)(-4a+1)=-(4a+l)-(4a-l)=(4a+1)(4a-l)=(4a)2-l2=16a2-1.解法2:(-4a-l)(-4a+l)=(-4a)2-l=16a2-1.根据学生板演,教师指出两种解法都很正确,解法1先用了提出负号的办法,使两乘式首项都变成正的,而后看出两数的和与这两数的差相
5、乘的形式,应用平方差公式,写出结果.解法2把-4a看成一个数,把1看成另一个数,直接写出(-4a)2-l2后得出结果.采用解法2的同学比较注意平方差公式的特征,能看到问题的本质,运算简捷.因此,我们在计算中,先要分析题目的数字特征,然后正确应用平方差公式,就能比较简捷地得到答案.课堂练习1.口答下列各题:(l)(-a+b)(a+b);(2)(a-b)(b+a);(3)(-a-b)(-a+b);(4)(a-b)(-a-b).2.计算下列各题:(1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);教师巡视学生练习情况,请不同解法的学生,或发生错误的学生板演,教师和学生一起分析
6、解法.三、小结1.什么是平方差公式2.运用公式要注意什么(1)要符合公式特征才能运用平方差公式;(2)有些式子表面不能应用公式,但实质能应用公式,要注意变形.四、作业1.运用平方差公式计算:(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);(3)(-1+3x)(-1-3x); (4)(-2b-5)(2b-5);(5)(2x3+15)(2x3-15);(6)(0.3x-0.l)(0.3x+l);2.计算:(1)(x+y)(x-y)+(2x+y)(2x+y); (2)(2a-b)(2a+b)-(2b-3a)(3a+2b);(3)x(x-3)-(x+7)(x-7);(4)(2x-5
7、)(x-2)+(3x-4)(3x+4).平方差公式的应用教案2平方差公式一、学习目标:1.经历探索平方差公式的过程.2.会推导平方差公式,并能运用公式进行简单的运算.二、重点难点重 点:平方差公式的推导和应用难 点:理解平方差公式的结构特征,灵活应用平方差公式.三、合作学习你能用简便方法计算下列各题吗(1)20011999(2)9981002导入新课:计算下列多项式的积.(1)(x+1)(x-1)(2)(m+2)(m-2)(3)(2x+1)(2x-1)(4)(x+5y)(x-5y)结论:两个数的和与这两个数的差的积,等于这两个数的平方差.即:(a+b)(a-b)=a2-b2四、精讲精练例1:运
8、用平方差公式计算:(1)(3x+2)(3x-2)(2)(b+2a)(2a-b)(3)(-x+2y)(-x-2y)例2:计算:(1)10298(2)(y+2)(y-2)-(y-1)(y+5)随堂练习计算:(1)(a+b)(-b+a)(2)(-a-b)(a-b)(3)(3a+2b)(3a-2b)(4)(a5-b2)(a5+b2)(5)(a+2b+2c)(a+2b-2c)(6)(a-b)(a+b)(a2+b2)五、小结:(a+b)(a-b)=a2-b2平方差公式的应用教案3用“平方差公式”分解因式一、学习目标:1.使学生了解运用公式法分解因式的意义;2.使学生掌握用平方差公式分解因式二、重点难点重
9、点:掌握运用平方差公式分解因式.难 点:将单项式化为平方形式,再用平方差公式分解因式;学习方法:归纳、概括、总结三、合作学习创设问题情境,引入新课在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式.如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法公式法.1.请看乘法公式(a+b)(
10、a-b)=a2-b2(1)左边是整式乘法,右边是一个多项式,把这个等式反过来就是a2-b2=(a+b)(a-b)(2)左边是一个多项式,右边是整式的乘积.大家判断一下,第二个式子从左边到右边是否是因式分解利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式.a2-b2=(a+b)(a-b)2.公式讲解如x2-16=(x)2-42=(x+4)(x-4).9m2-4n2=(3m)2-(2n)2=(3m+2n)(3m-2n)四、精讲精练例1、把下列各式分解因式:(1)25-16x2;(2)9a2-b2.例2、把下列各式分解因式:(1)9(m+n)2-(m-n)2;(2)2x3
11、-8x.补充例题:判断下列分解因式是否正确.(1)(a+b)2-c2=a2+2ab+b2-c2.(2)a4-1=(a2)2-1=(a2+1)(a2-1).五、课堂练习教科书练习六、作业1、教科书习题2、分解因式:x4-16x3-4x4x2-(y-z)23、若x2-y2=30,x-y=-5求x+y平方差公式的应用教案4课题名称:完全平方公式(1)一、内容简介本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。关键信息:1、以教育材料作为出发点,依据数学课程标准,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过
12、学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度尤其是创新精神和实践能力等方面的发展。2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。二、学习者分析:1、在学习本课之前应具备的基本知识和技能:同类项的定义。合并同类项法则多项式乘以多项式法则。2、学习者对即将学习的内容已经具备的水平:在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。三、教学/学习目标及其对应的课程标准:(一)
13、教学目标:1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。2、会推导完全平方公式,并能运用公式进行简单的计算。(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进行描述。(四)解决问题:能根据实际情况,使老师可以及时诊断学情,调查教学。(3)通过课后访谈和作业分析,及时查漏补缺,确保达到预期的教学效果。五、教学媒体:多媒体六、教学和活动过程:教学过程设计如下:一、提出问题引入同学们,前面我们学习了多项式乘多项式法则和合并同类项法则
14、,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗(2m+3n)2=_,(-2m-3n)2=_,(2m-3n)2=_,(-2m+3n)2=_。二、分析问题1、学生回答分组交流、探讨(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,(2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。(1)原式的特点。(2)结果的项数特点。(3)三项系数的特点(尤其是符号的特点)。(4)三项与原多项式中两个单项式的关系。2、学生回答总结完全平方公式的语言描述:两数和的平方,等于它们平方的和,加上它们乘积的两倍;两数差的平
15、方,等于它们平方的和,减去它们乘积的两倍。3、学生回答完全平方公式的数学表达式:(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.三、运用公式,解决问题1、口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性、兴趣)(m+n)2=_,(m-n)2=_,(-m+n)2=_,(-m-n)2=_,(a+3)2=_,(-c+5)2=_,(-7-a)2=_,(0.5-a)2=_.2、判断:()(a-2b)2=a2-2ab+b2()(2m+n)2=2m2+4mn+n2()(-n-3m)2=n2-6mn+9m2()(5a+0.2b)2=25a2+5ab+0.4b2()(5a-0.2b)2=
16、5a2-5ab+0.04b2()(-a-2b)2=(a+2b)2()(2a-4b)2=(4a-2b)2()(-5m+n)2=(-n+5m)23、小试牛刀(x+y)2=_;(-y-x)2=_;(2x+3)2=_;(3a-2)2=_;(2x+3y)2=_;(4x-5y)2=_;(0.5m+n)2=_;(a-0.6b)2=_.四、学生小结你认为完全平方公式在应用过程当中,需要注意那些问题(1)公式右边共有3项。(2)两个平方项符号永远为正。(3)中间项的符号由等号左边的两项符号是否相同决定。(4)中间项是等号左边两项乘积的2倍。五、冒险岛:(1)(-3a+2b)2=_(2)(-7-2m)2=_(3)
17、(-0.5m+2n)2=_(4)(3/5a-1/2b)2=_(5)(mn+3)2=_(6)(a2b-0.2)2=_(7)(2xy2-3x2y)2=_(8)(2n3-3m3)2=_六、学生自我评价小结通过本节课的学习,你有什么收获和感悟本节课,我们自己通过计算、分析结果,总结出了完全平方公式。在知识探索的过程当中,同学们积极思考,大胆探索,团结协作共同取得了进步。七作业P34随堂练习P36习题平方差公式的应用教案5总体说明:完全平方公式则是对多项式乘法中出现的比较特殊的算式的一种归纳、总结.同时,完全平方公式的推导是初中数学中运用推理方法进行代数式恒等变形的开端,通过完全平方公式的学习对简化某些
18、整式的运算、培养学生的求简意识有较大好处.而且完全平方公式是后继学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习分解因式、分式运算、解一元二次方程以及二次函数的恒等变形的重要基础,同时也具备培养学生渐渐养成严密的逻辑推理能力的作用.因此学好完全平方公式对于代数知识的后继学习具备相当重要的意义.本节是北师大版七年级数学下册第一章整式的运算的第8小节,占两个课时,这是第一课时,它主要让学生经历探索与推导完全平方公式的过程,培养学生的符号感与推理能力,让学生进一步体会数形结合的思想在数学中的作用.一、学生学情分析学生的技能基础:学生通过对本章前几节课的学习,已经学习了整式的概念
19、、整式的加减、幂的运算、整式的乘法、平方差公式,这些基础知识的学习为本节课的学习奠定了基础.学生活动经验基础:在平方差公式一节的学习中,学生已经经历了探索和应用的过程,获得了一些数学活动的经验,培养了一定的符号感和推理能力;同时在相关专业知识的学习过程当中,学生经历了很多探究学习的过程,具备了一定的独立探究意识以及与同伴合作交流的能力.二、教学目标知识与技能:(1)让学生会推导完全平方公式,并能进行简单的应用.(2)了解完全平方公式的几何背景.数学能力:(1)由学生经历探索完全平方公式的过程,进一步发展学生的符号感与推理能力.(2)发展学生的数形结合的数学思想.情感与态度:将学生头脑中的前概念
20、暴露出来进行分析,避免形成教学上的“相异构想”.三、教学重难点教学重点:1、完全平方公式的推导;2、完全平方公式的应用;教学难点:1、消除学生头脑中的前概念,避免形成“相异构想”;2、完全平方公式结构的认知及正确应用.四、教学设计分析本节课设计了十一个教学环节:学生练习、暴露问题验证推广到一般情况,形成公式数形结合进一步拓广总结口诀公式应用学生反馈学生PK学生反思巩固练习.第一环节:学生练习、暴露问题活动内容:计算:(a+2)2设想学生的做法有以下几种可能:(a+2)2=a2+22(a+2)2=a2+2a+22正确做法;针对这几种结果都将a=1代入计算,得出都是错误的,但的做法是否一定正确呢怎
21、么验证活动目的:在很多学生的头脑中,认为两数和的完全平方与两数的平方和等同,即:(a+2)2=a2+22,如果不将这种定式思维_,就很难建立起一个正确的概念;这一环节的目的就是让学生的这种错误或其它错误充分暴露出来,并让学生充分认识到自己原有的定式思维是错误的,为下一步构建新的思维模式埋下伏笔.第二环节:验证(a+2)2=a24a+22活动内容:(a+2)2=(a+2)(a+2)=a2+2a+2a+22活动目的:在前一环节已经打破了学生的原有的思维定式的基础上,给学生建立正确的思维方法,避免形成“相异构想”.第三环节:推广到一般情况,形成公式活动内容:(a+b)2=(a+b)(a+b)=a2+
22、ab+ab+b2=a2+2ab+b2活动目的:让学生经历从特殊到一般的探究过程,体验到发现的快乐.第四环节:数形结合活动内容:设问:在多项式的乘法中,很多公式都都可以用几何图形进行解释,那么完全平方公式怎样用几何图形解释呢展示动画,用几何图形诠释完全平方公式的几何意义.学生思考:还有没有其它的方法来诠释完全平方公式(课后思考)活动目的:让学生进一步认识到数与形都不是孤立存在的,数与形是可以有机地结合在一起,从而发展学生的数形结合的数学思想.第五环节:进一步拓广活动内容:推导两数差的完全平方公式:(ab)2=a22ab+b2方法1:(ab)2=(ab)(ab)=a2abab+b2=a22ab+b2方法2:(ab)2=a+(b)2=a2+2a(b)+(b)2=a22ab+b2活动目的:让学生经历由两数和的完全平方公式拓广到两数差的完全平方公式的过程,体会到符号差异带来的结果差异,由第二种推导方法体会到两数差的完全平方公式是两数和的完全平方公式的应用.第六环节:总结口诀、认识特征活动内容:比较两个公式的共同点与不同点:(a+b)2=a2+2ab+b2(ab)2=a2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度物流运输货款担保服务合同范本3篇
- 2024船舶货物运输合同 快船服务
- 2024青岛二手房交易合同范本:全流程解析3篇
- 二零二五年度软件定制开发合同.2篇
- 2025年春季1530安全教育记录主题
- 2025年度网络安全审计与合规性检查服务协议3篇
- 二零二五年度绿色低碳餐饮门店租赁合作协议
- 二零二五年度禽类养殖标准化示范项目禽类采购合同3篇
- 二零二五年度铸件打磨加工承包协议183篇
- 2025年度高端电子产品定制采购及供货合同3篇
- 2024年网络安全知识竞赛考试题库500题(含答案)
- 《2024年 基于Python的电影弹幕数据分析》范文
- 三支一扶协议书模板
- 烫伤的防治与护理
- 2024年全国职业院校技能大赛高职组(护理技能赛项)备赛试题库(含答案)
- 《采矿工程英语》课件
- 驾驶员三年内工作总结
- 天津市和平区2023-2024学年七年级下学期6月期末历史试题
- 青年你为什么要入团-团员教育主题班会-热点主题班会课件
- 司法鉴定工作应急预案
- 《竹结构建筑技术规程》
评论
0/150
提交评论