抽样理论与方法:分层随机抽样课件_第1页
抽样理论与方法:分层随机抽样课件_第2页
抽样理论与方法:分层随机抽样课件_第3页
抽样理论与方法:分层随机抽样课件_第4页
抽样理论与方法:分层随机抽样课件_第5页
已阅读5页,还剩59页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、分层随机抽样4.1 概述 一、分层抽样(stratified sampling)、分层随机抽样(stratified random sampling)分层抽样:将容量为N的总体分成L个不相重叠的子总体,子总体的大小分别为N1、 N2、 NL,皆已知,且 则每个子总体就称为层。从每层中独立地进行抽样,这样的抽样方法称为分层抽样。分层随机抽样:在分层抽样中,如果每层中的抽样都是简单随机抽样,则这样的分层抽样称为分层随机抽样。二、分层抽样的适用场合不仅需要估计总体参数,也需要估计各层参数。便于管理,按现成的地理分布或行政划分来分层。希望样本中能包含各个部分,以增加代表性。把一个内部差异很大的总体分成

2、几个内部比较相似的子总体(层)进行分层抽样,可以提高估计量的精度。如果有极端值,也可以把它们分离出来形成一层。即“层间方差大,层内方差小”。三、进行分层抽样时,应注意的方面层内抽样设计的选择。分层变量的选择。各层样本量的分配,样本总量的确定。层数。层的分界。4.2 简单估计量及其性质对总体均值或总值的估计:例4.1 总体由1000人组成,按以往的收入情况将总体分成两层:第一层(高收入层),20人;第二层(低收入层),980人。从第一层随机抽取2人,调查上月收入,得数据(单位:元)1200及1600;从第二层随机抽取8人,调查上月收入,得数据(单位:元)220、230、180、320、400、3

3、40、280、360。估计这1000人上月平均收入。解: 对比:一、分层抽样中,例3. 调查某地区的居民奶制品年消费支出,以居民户为抽样单元,根据经济及收入水平将居民户分为层,每层按简单随机抽样抽取户,调查数据如下,估计该地区居民奶制品年消费总支出及估计的标准差。样本户奶制品年消费支出解:(3)该地区居民奶制品年消费总支出的置信度为95%的置信区间为例3.3:某市进行家庭收入调查,分城镇居民及农村居民两部分抽样,在全部城镇居民23560户中随机抽取300户,在全部农村居民148420户中随机抽取250户,调查结果是城镇年平均户收入为15180元,标准差为2972元;农村年平均户收入为9856元

4、,标准差为2546元。求全市年平均户收入的置信度为90%的置信区间。解:3、分层随机抽样中,总体比例P的简单估计估计的性质(1)(2)(3)(4)4例:在某行业技术人员中,按年龄分层,调查会使用计算机者所占的比例。数据如下: 试估计总体中会计算机者占的比例。解:3.3 各层样本量的分配在分层随机抽样中,假设样本量n固定1.比例分配:指按各层层权(各层单元数占总体单元数的比例)进行分配。例:假设某公司欲估计某类产品的用户的每年平均支出。企划人员拟就整个潜在用户的名单,共8000户。 采用分层随机抽样抽取样本200户,求按比例分配时各层样本量。解:例. 某电视台要在某地区的住户中,调查该台的晚间新

5、闻的收视率。该地区包括3个县,共有67401家住户。假定该电视台采用等比例分层随机抽样分别从三个县抽取住户,样本量为1500。每个县的总户数以及抽样数据列表如下: 求该地区新闻收视率的95%的置信区间。解:分层随机抽样时,收视率P的估计为: 收视率P的置信度为95%的近似置信区间为:即有95%的把握可以认为,该地区的新闻收视率在22.1%26.5%之间。2.最优分配:例.在例3.2中,样本量仍为n=40,则按比例分配和Neyman分配时,各层的样本量为多少?例. 在例3.3中,样本量仍为n=550。 城镇居民23560户,农村居民148420户。 城镇居民与农村居民的年收入的标准差分别为S1=

6、3000元,S2=2500元。 对城镇居民与农村居民抽样平均每户的费用比为1:2。 试求城镇与农村两层比例分配与最优分配的样本量。又若不考虑费用因素,那么最优分配的结果如何?解:例3.:调查某地区的居民奶制品年消费支出,以居民户为抽样单元,根据经济及收入水平将居民户分为层,每层按简单随机抽样抽取户,调查数据如下,估计该地区居民奶制品年消费总支出及估计的标准差。表:样本户奶制品年消费支出解:按比例分配时, 对于Neyman分配,例:在例3.3中,样本量仍为n=550,城镇居民与农村居民年收入的标准差估计分别为3000元和2500元,对城镇居民与农村居民抽样品均每户的费用比为1:2,试求(1)城镇

7、与农村两层比例分配样本量;(2)最优分配的样本量。解:(1)按比例分配时, (2)对于Neyman分配,4.4 样本总量的确定1.在分层随机抽样中,影响样本总量n的因素:(1)只讨论对总体参数的精度要求;(2)样本量的分配形式。2.在估计总体均值时,若精度要求给定,样本总量n的确定公式:证明:*例:某流水线生产了1500件产品,为估计产品的合格率,将产品按早、中、晚班分成三层。各班产量分别为:早班550件,中班500件,晚班450件。根据以往的情况,每班合格率均在95%左右。若要求以95%的把握使估计量的绝对误差不超过2%,分别确定按比例配置和按Neyman配置时总样本量和各层样本量。解:例:

8、(续例3.2)如果要求在置信度95%下,相对误差不超过10%,则按比例分配和Neyman分配时,总样本量分别为多少?解:3.在估计总体均值时,若总费用给定,精度最高时,样本总量n的确定公式:4.5 分层时的若干问题1.抽样效果分析(1)分层随机抽样与简单随机抽样的比较 在相同的样本量下,比较二者的估计量的方差的大小。分层随机抽样以比例分配为代表。 (2)最优分配(以Neyman为例)与比例分配在精度上的比较 理论上讲,最优分配的精度应高于相同样本量的任何其他分配。当然,也高于比例分配的精度。但最优分配在精度上的改进有多大呢?*最优分配对于估计总体比例P的情形较少使用。(除非特别小或特别大)2.

9、层的划分()层的划分原则一种原则是仅为满足估计部分(即子总体)参数的需要或为了组织实施的便利。另一种原则是尽可能提高抽样精度,减少估计量的方差。需要选择恰当的变量变量作为分层标志。 分层标志的选择:可以是调查指标的前期值可以是与调查指标有较大线性相关的指标。例如交通运输量的调查中,车辆的吨位是与其两个主要指标:运量与周转量密切相关的。(2)层权对估计量的影响 (3)最优分层如何确定各层的分点:下面介绍一种确定层界的快速近似法累积平方根法。它是由Dalenius和Hodges提出的。其做法:将分层变量的分布的累积平方根进行等分来获得最优分层,所以成为累积平方根法。例:某地区电信部门在对利用电话上网的居民家庭安装ADSL意愿进行调查时,以辖区内最近三个月有电话上网支出的居民用户为总体(上网电话费为0.02元/分钟),并准备按上网电话费支出(记为x)进行分层,试确定各层的分点。居民家庭上网电话费支出分布如下页表所示 *计算累积频数时,应注意x的取值区间不是等长的。30元以下,以5元为间距,计算时,按 累积;30-100元,以10元为间距,计算时,按 累积;100元以上,以50元为间距,计算时,按 累积。解:若取层数为4,则应每隔2712.949/4=678.237分一层。 分点应使得累积 最接近678.237, 2* 678.237 =1356.474,3* 678.2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论