版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022初一下册数学课程优质公开课获奖教案设计例文 2022初一下册数学课程教案例文1 一、学习目标: 1.多项式除以单项式的运算法则及其应用. 2.多项式除以单项式的运算算理. 二、重点难点: 重点: 多项式除以单项式的运算法则及其应用 难点: 探索多项式与单项式相除的运算法则的过程 三、合作学习: (一) 回顾单项式除以单项式法则 (二) 学生动手,探究新课 1. 计算下列各式: (1)(am+bm)m (2)(a2+ab)a (3)(4x2y+2xy2)2xy. 2. 提问:说说你是怎样计算的 还有什么发现吗? (三) 总结法则 1. 多项式除以单项式:先把这个多项式的每一项除以_,再把
2、所得的商_ 2. 本质:把多项式除以单项式转化成_ 四、精讲精练 例:(1)(12a3-6a2+3a)3a; (2)(21x4y3-35x3y2+7x2y2)(-7x2y); (3)(x+y)2-y(2x+y)-8x2x (4)(-6a3b3+ 8a2b4+10a2b3+2ab2)(-2ab2) 随堂练习: 教科书 练习 五、小结 1、单项式的除法法则 2、应用单项式除法法则应注意: A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号 B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数; C
3、、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏; D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行. E、多项式除以单项式法则 2022初一下册数学课程教案例文2 一、教学目标 1.理解分式的基本性质. 2.会用分式的基本性质将分式变形. 二、重点、难点 1.重点: 理解分式的基本性质. 2.难点: 灵活应用分式的基本性质将分式变形. 3.认知难点与突破方法 教学难点是灵活应用分式的基本性质将分式变形. 突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使学生在理解的
4、基础上灵活地将分式变形. 三、例、习题的意图分析 1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变. 2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母. 教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解. 3.P11习题16.1
5、的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变. “不改变分式的值,使分式的分子和分母都不含-号”是分式的基本性质的应用之一,所以补充例5. 四、课堂引入 1.请同学们考虑: 与 相等吗? 与 相等吗?为什么? 2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据? 3.提问分数的基本性质,让学生类比猜想出分式的基本性质. 五、例题讲解 P7例2.填空: 分析应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变. P11例3.约分
6、: 分析 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式. P11例4.通分: 分析 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母. (补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号. , , , , 。 分析每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变. 解: = , = , = , = , = 。 六、随堂练习 1.填空: (1) = (2) = (3) = (4) = 2.约分: (1) (2) (3) (
7、4) 3.通分: (1) 和 (2) 和 (3) 和 (4) 和 4.不改变分式的值,使下列分式的分子和分母都不含“-”号. (1) (2) (3) (4) 七、课后练习 1.判断下列约分是否正确: (1) = (2) = (3) =0 2.通分: (1) 和 (2) 和 3.不改变分式的值,使分子第一项系数为正,分式本身不带“-”号. (1) (2) 八、答案: 六、1.(1)2x (2) 4b (3) bn+n (4)x+y 2.(1) (2) (3) (4)-2(x-y)2 3.通分: (1) = , = (2) = , = (3) = = (4) = = 4.(1) (2) (3) (
8、4) 2022初一下册数学课程教案例文3 一、教学目标:理解分式乘除法的法则,会进行分式乘除运算. 二、重点、难点 1.重点:会用分式乘除的法则进行运算. 2.难点:灵活运用分式乘除的法则进行运算 . 3. 难点与突破方法 分式的运算以有理数和整式的运算为基础,以因式分解为手段,经过转化后往经过转化后往往可视为整式的运算.分式的乘除的法则和运算顺序可类比分数的有关内容得到.所以,教给学生类比的数学思想方法能较好地实现新知识的转化.只要做到这一点就可充分发挥学生的主体性,使学生主动获取知识.教师要重点处理分式中有别于分数运算的有关内容,使学生规范掌握,特别是运算符号的问题,要抓住出现的问题认真落
9、实. 三、例、习题的意图分析 1.P13本节的引入还是用问题1求容积的高,问题2求大拖拉机的工作效率是小拖拉机的工作效率的多少倍,这两个引例所得到的容积的高是 ,大拖拉机的工作效率是小拖拉机的工作效率的倍.引出了分式的乘除法的实际存在的意义,进一步引出P14观察从分数的乘除法引导学生类比出分式的乘除法的法则.但分析题意、列式子时,不易耽误太多时间. 2.P14例1应用分式的乘除法法则进行计算,注意计算的结果如能约分,应化简到最简. 3.P14例2是较复杂的分式乘除,分式的分子、分母是多项式,应先把多项式分解因式,再进行约分. 4.P14例3是应用题,题意也比较容易理解,式子也比较容易列出来,但
10、要注意根据问题的实际意义可知a1,因此(a-1)2=a2-2a+1四、课堂引入 1.出示P13本节的引入的问题1求容积的高 ,问题2求大拖拉机的工作效率是小拖拉机的工作效率的 倍. 引入从上面的问题可知,有时需要分式运算的乘除.本节我们就讨论数量关系需要进行分式的乘除运算.我们先从分数的乘除入手,类比出分式的乘除法法则. 1. P14观察 从上面的算式可以看到分式的乘除法法则. 3.提问 P14思考类比分数的乘除法法则,你能说出分式的乘除法法则? 类似分数的乘除法法则得到分式的乘除法法则的结论. 五、例题讲解 P14例1. 分析这道例题就是直接应用分式的乘除法法则进行运算.应该注意的是运算结果
11、应约分到最简,还应注意在计算时跟整式运算一样,先判断运算符号,在计算结果. P15例2. 分析 这道例题的分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.结果的分母如果不是单一的多项式,而是多个多项式相乘是不必把它们展开. P15例. 分析这道应用题有两问,第一问是:哪一种小麦的单位面积产量?先分别求出“丰收1号”、“丰收2号”小麦试验田的面积,再分别求出“丰收1号”、“丰收2号”小麦试验田的单位面积产量,分别是 、 ,还要判断出以上两个分式的值,哪一个值更大.要根据问题的实际意义可知a1,因此(a-1)2=a2-2a+1六、随堂练习 计算 (1) (2) (3) (4)-8xy
12、(5) (6) 七、课后练习 计算 (1) (2) (3) (4) (5) (6) 八、答案: 六、(1)ab (2) (3) (4)-20 x2 (5) (6) 七、(1) (2) (3) (4) (5) (6) 2022初一下册数学课程教案例文4 一、教学目标:熟练地进行分式乘除法的混合运算. 二、重点、难点 1.重点:熟练地进行分式乘除法的混合运算. 2.难点:熟练地进行分式乘除法的混合运算. 3.认知难点与突破方法: 紧紧抓住分式乘除法的混合运算先统一成为乘法运算这一点,然后利用上节课分式乘法运算的基础,达到熟练地进行分式乘除法的混合运算的目的.课堂练习以学生自己讨论为主,教师可组织学
13、生对所做的题目作自我评价,关键是点拨运算符号问题、变号法则. 三、例、习题的意图分析 1. P17页例4是分式乘除法的混合运算. 分式乘除法的混合运算先把除法统一成乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的结果要是最简分式或整式. 教材P17例4只把运算统一乘法,而没有把25x2-9分解因式,就得出了最后的结果,教师在见解是不要跳步太快,以免学习有困难的学生理解不了,造成新的疑点. 2, P17页例4中没有涉及到符号问题,可运算符号问题、变号法则是学生学习中重点,也是难点,故补充例题,突破符号问题. 四、课堂引入 计算 (1) (2) 五、例题讲解 (P17
14、)例4.计算 分析 是分式乘除法的混合运算. 分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的. (补充)例.计算 (1) = (先把除法统一成乘法运算) = (判断运算的符号) = (约分到最简分式) (2) = (先把除法统一成乘法运算) = (分子、分母中的多项式分解因式) = = 六、随堂练习 计算 (1) (2) (3) (4) 七、课后练习 计算 (1) (2) (3) (4) 八、答案: 六.(1) (2) (3) (4)-y 七. (1) (2) (3) (4) 2022初一下册数学课程教案例文5 一
15、、教学目标:理解分式乘方的运算法则,熟练地进行分式乘方的运算. 二、重点、难点 1.重点:熟练地进行分式乘方的运算. 2.难点:熟练地进行分式乘、除、乘方的混合运算. 3.认知难点与突破方法 讲解分式乘方的运算法则之前,根据乘方的意义和分式乘法的法则,计算 = = = , = = = , 顺其自然地推导可得: = = = ,即 = . (n为正整数) 归纳出分式乘方的法则:分式乘方要把分子、分母分别乘方. 三、例、习题的意图分析 1. P17例5第(1)题是分式的乘方运算,它与整式的乘方一样应先判 断乘方的结果的符号,在分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调
16、运算顺序:先做乘方,再做乘除. 2.教材P17例5中象第(1)题这样的分式的乘方运算只有一题,对于初学者来说,练习的量显然少了些,故教师应作适当的补充练习.同样象第(2)题这样的分式的乘除与乘方的混合运算,也应相应的增加几题为好. 分式的乘除与乘方的混合运算是学生学习中重点,也是难点,故补充例题,强调运算顺序,不要盲目地跳步计算,提高正确率,突破这个难点. 四、课堂引入 计算下列各题: (1) = =( ) (2) = =( ) (3) = =( ) 提问由以上计算的结果你能推出 (n为正整数)的结果吗? 五、例题讲解 (P17)例5.计算 分析第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024专用抚养费承担确认合同一
- 2024年商业空间装修工程设计合同一
- 2024城区建筑垃圾专项清理协议一
- 二零二四年度影视版权授权合同:电视剧版权授权播放协议3篇
- 2024年协议欺诈责任及赔偿额度指南版B版
- 江南大学《常微分方程》2021-2022学年第一学期期末试卷
- 佳木斯大学《湿地科学》2021-2022学年第一学期期末试卷
- 佳木斯大学《公共体育1》2021-2022学年第一学期期末试卷
- 暨南大学《西方哲学与人生》2021-2022学年第一学期期末试卷
- 暨南大学《口腔颌面外科学实验》2021-2022学年第一学期期末试卷
- 小学英语教学中学困生转化的方法探究
- 北京市海淀区2020-2021学年高三高考一模化学试卷(含详解)
- 烹饪技巧培训课件
- 康复科病人的营养评估与饮食指导
- 河北省唐山市迁安市2022-2023学年七年级上学期期末考试英语试题
- 2023年中东能源市场分析报告
- 2023信息数据保密协议Word模板
- 第18课《狼》课件(共31张)语文七年级上册
- 村口修建公墓申请书
- 2023南方国家电网招聘笔试参考题库(共500题)答案详解版
- 2023-2024学年广东省深圳市育才二中九年级(上)期中物理试卷
评论
0/150
提交评论